

The Specification of Requirements in the MADAE-Pro
Software Process

Rosario Girardi, Adriana Leite

Department of Computer Science
Federal University of Maranhão (UFMA) – São Luís, MA – Brazil

rosariogirardi@gmail.com, adri07lc@gmail.com

Abstract. MADAE-Pro is an ontology-driven process for multi-agent domain
and application engineering which promotes the construction and reuse of
agent-oriented applications families. This article introduces MADAE-Pro,
emphasizing the description of its domain analysis and application
requirements engineering phases and showing how software artifacts
produced from the first are reused in the last one. Illustrating examples are
extracted from two case studies we have conducted to evaluate MADAE-Pro.
The first case study assesses the Multi-Agent Domain Engineering sub-process
of MADAE-Pro through the development of a multi-agent system family of
recommender systems supporting alternative (collaborative, content-based
and hybrid) filtering techniques. The second one, evaluates the Multi-Agent
Application Engineering sub-process of MADAE-Pro through the construction
of InfoTrib, a Tax Law recommender system which provides recommendations
based on new tax law information items using a content-based filtering
technique. ONTOSERS and InfoTrib were modeled using ONTORMAS, a
knowledge-based tool for supporting and automating the tasks of MADAE-
Pro.

1. Introduction

MADAE-Pro (“Multi-agent Domain and Application Engineering Process”) is a
knowledge-based process for the development and reuse of families of multi-agent
software systems.

 A family of software systems is defined as a set of systems sharing some
commonalities but also having particular features [Czarnecki, K. and Eisenecker, U. W.
2000]. The agent-oriented software community has increased its interest in this kind of
product considering not only its already known potential for improving the quality of
software applications and for increasing the productivity of software development
[Pohl,K., Bockle, G. and Linden, F. 2005]. Also, agent-oriented software families are
nowadays feasible because of the maturity and experience gained on agent-oriented
software development.

 A software development process is a model that specifies a life cycle, describing
the phases through which transits a software product from its conception through its
development along with a methodology that integrates the techniques to be applied in
each one of the phases according to a particular development paradigm.

 MADAE-Pro consists of two complementary sub-processes:

• Multi-agent Domain Engineering, a process for the development of a family of
multi-agent software systems in a problem domain, by applying MADEM
(“Multi-agent Domain Engineering Methodology”) [Girardi, R. and Marinho, L.
2007]; and

• Multi-agent Application Engineering, the process for constructing a specific
agent-oriented application by reusing one or more of those families, using
MAAEM (“Multi-agent Application Engineering Methodology”) [Drumond, L.
and Girardi, R. 2008] [Leite, A., Girardi, R. and Cavalcante, U. 2008b].

 The process consolidates a long term research effort on techniques,
methodologies and tools for promoting reuse on agent-oriented software development.

 The software products generated in each task of MADAE-Pro are represented as
instances of the ONTORMAS knowledge base. ONTORMAS (“ONTOlogy driven tool
for the Reuse of Multi-Agent Systems”) [Leite, A., Girardi, R. and Cavalcante, U.
2008a] is a knowledge-based tool for supporting and automating the MADAE-Pro tasks.
ONTORMAS is an extension of ONTOMADEM (“A Knowledge-based Tool for Multi-
Agent Domain Engineering”) [Girardi, R., Leite, A. 2008], a tool which supports just
the MADEM methodology.

 This work introduces MADAE-Pro emphasizing the description of its domain
analysis and application requirements engineering phases, illustrating how software
artifacts produced from the first phase are reused in the last one. Examples are extracted
from two case studies we have conducted to evaluate the process [Mariano, R. at al.
2008] [Mariano, R. 2008]. The first case study evaluates the Multi-Agent Domain
Engineering sub-process of MADAE-Pro through the development of ONTOSERS
(ONTOlogy-based SEmantic web Recommender Systems”), a multi-agent system
family of recommender systems supporting alternative (collaborative, content-based and
hybrid) filtering techniques. The second one, evaluates the Multi-Agent Application
Engineering sub-process of MADAE-Pro through the reuse of ONTOSERS family for
the development of InfoTrib. InfoTrib [Mariano, R. 2008] is a tax law recommender
system in which, based on a user profile specifying his/her interests in the diverse types
of taxes, the system provides recommendations based on new tax law information items,
using a content-based filtering technique. The modeling process revealed being
consistent and capable of generating products with high potential of reuse. The
ONTOSERS family provided an appropriate framework for experimentation, analysis
and evaluation of diverse information filtering algorithms. INFOTRIB a tax law
recommender system was developed through the reuse of the ONTOSERS family.
[Mariano, R., 2008].

 The paper is organized as follows. Section 2 describes the MADAE-Pro software
development process. Section 2.1 introduces its lifecycle and a general description of
the support that the MADEM and MAAEM methodologies provide to each one of its
phases. Section 2.2 gives an overview of the ONTORMAS tool. Section 3 details the
particular tasks of the Multi-agent Domain Analysis and Multi-agent Application
Requirements Engineering phases of MADAE-Pro along with the guidelines provided
by these methodologies to carry out those tasks. Examples from case studies conducted
for the evaluation of these phases are also described. Section 4 references related work

discussing its similarities and differences with MADAE-Pro. Finally, section 5
concludes the paper with some considerations on ongoing work.

2. The MADAE-Pro Software Process Model

MADAE-Pro is a knowledge-based process model which integrates an iterative,
incremental and goal-driven life cycle (see section 2.1) along with the MADEM and
MAAEM methodologies for Multi-agent Domain Engineering and Multi-agent
Application Engineering, respectively. Its phases, tasks and products are conceptualized
in the ONTORMAS knowledge-base and both, specific or multi-agent system families
are represented as instances of this knowledge base (see section 2.2). Main modeling
concepts and tasks of MADEM and MAAEM are based both on techniques for Domain
and Application Engineering [Arango, G. 1988], [Czarnecki, K. and Eisenecker, U. W.
2000] [Girardi, R. 1992] [Harsu, M. 2002] [Pohl,K., Bockle, G. and Linden, F. 2005]
and for development of multi-agent systems [Bresciani, P. et al. 2004], [Cossentino, M.
et al. 2004] [Dileo, J., Jacobs, T. and Deloach, S. 2002] [Perini, A. and Susi, A. 2004]
[Odell, J., Parunak, H. V. D. and Bauer, B. 2000].

 The semantic network shown in Figure 1 represents the main elements involved
in MADAE-Pro: the MADEM and MAAEM methodologies; the techniques GRAMO
(Generic Requiremente Analysis Method based on Ontologies), DDEMAS (Domain
Design technique for Multi-Agent Systems) and DIMAS (Domain Design technique for
Multi-Agent Systems) which integrate the MADEM methodology, and are associated,
respectively, to the phases of Domain Analysis, Domain Design and Domain
Implementation; the techniques SRAMO (Specific Requirement Analysis Method
based on Ontologies), ADEMAS (Aplication Design technique for Multi-Agent
Systems) and AIMAS (Application Implementation Technique for Multi-Agent
Systems) which are part of the MAAEM methodology and are associated, respectively,
to the phases of Application Requirements Engineering, Application Design and
Application Implementation; the adopted life cycle, which is iterative and incremental;
the ONTORMAS tool, which is used to guide the development tasks, perform visual
modeling, document and store the artifacts produced during the process execution; and
finally, the modeling language for multi-agent systems, MADAE-ML. This language
provides a graphical representation for models and modeling concepts of the MADAEM
and MAAEM methodologies and for roles in the process (e.g. Programmer, System
Analyst), responsible for the realization of one or more tasks during the execution
process.

 For the specification of a problem to be solved, both methodologies focus on
modeling goals, roles and interactions of entities of an organization, representing the
requirements of either a multi-agent system family or a specific multi-agent application
from the point of view of the organization stakeholders.

 An organization is composed of both passive and active entities. Active entities
have knowledge and use it to exhibit autonomous behavior performed in order to
achieve specific goals. The achievement of specific goals allows reaching the general
goal of the organization. For instance, an information system can have the general goal
of “satisfying the information needs of an organization” and the specific goals of
“satisfying dynamic or long term information needs”.

Figure 1 - Main concepts involved in MADAE-Pro

 Specific goals are reached through the performance of responsibilities in charge
of particular roles with a certain degree of autonomy. Pre-conditions and post-conditions
may need to be satisfied for/after the execution of a responsibility. Knowledge can be
consumed and produced through the execution of a responsibility. For instance, an entity
can play the role of “retriever” with the responsibility of executing the responsibility of
satisfying the dynamic information needs of an organization. Another entity can play the
role of “filter”, in charge of the responsibility of satisfying the long-term information
needs of the organization. Sometimes, entities have to communicate with other internal
or external entities (like stakeholders) to cooperate in the execution of a responsibility.
For instance, the entity playing the role of “filter” may need to interact with a
stakeholder to observe his/her behavior in order to infer his/her profile of information
interests.

 For the specification of a design solution, roles are assigned to reactive or
deliberative agents structured and organized into a particular multi-agent architectural
solution according to non-functional requirements.

 Agents have skills related to one or a set of computational techniques that
support the execution of responsibilities in an effective way. According to the previous
examples, skills can be, for instance, the rules of the organization to access and structure
its information sources.

 For the implementation, the agent design models are mapped to agents,
behaviors and communication acts, concepts involved in the JADE framework
[Bellifemine, F. et al. 2003] and JESS [Friedman-Hill, E. 2003], which are the adopted
implementation platform. This platform was chosen for being one of the few public
domain platforms available allowing the construction of deliberative agents; because of
its popularity and maturity; and ease of integration with the Protégé platform [Gennari,
J. et al. 2002], frequently used to build ontologies by the research group. JADE is a

middleware for the development and run-time execution of peer-to-peer applications
which are based on the agents paradigm, and JESS is a rule engine and scripting
environment that allows build software that has the capacity to "reason" using
knowledge supplied in the form of declarative rules. Goals, roles, and responsibilities
are the modeling abstractions of the system requirements which are mapped to agents,
behaviors and communication acts to construct an agent-oriented computational solution
satisfying such requirements.

 Variability modeling is a main concern on the construction of multi-agent system
families. In MADAE-Pro, it is carried out in parallel with all MADEM phases to
determine the common and variable parts of a family. This is done by identifying the
“Variation Points” and its correspondent “Variants”. A variation point is the
representation of a concept subjected to variation. A variant represents the alternative or
optional variations of such a concept.

2.1. The MADAE-Pro lifecycle

Figure 2 illustrates the MADAE-Pro process life cycle using the SPEM (“Software
Process Engineering Metamodel”) notation [SPEM 2010]. The cycle is iterative,
incremental and goal-driven. Development is carried out through successive increments,
looking for reducing software complexity. It is initiated with the decision of
development of a new family of applications, or a specific one, by specifying a new
general goal and restarted for the development of a new specific goal or to update an
existing one in evolutive and corrective maintenance, respectively (“new or existing
goal’ in diamond of Figure 2).

 Iterations can also occur between the phases for refining modeling products.
Techniques are associated to each development phase to guide the modeling tasks. In
Domain Engineering, the techniques GRAMO, DDEMAS and DIMAS guide,
respectively, the tasks of the Domain Analysis, Domain Design and Domain
Implementation phases. In Application Engineering, the techniques SRAMO,
ADEMAS and AIMAS guide, respectively, the tasks of the Application Requirements
Engineering, Application Design and Application Implementation phases. Figure 2 also
shows the consumed and generated products of each phase. MADAE-Pro consists of six
development phases: domain analysis, domain design and domain implementation,
supported by the MADEM methodology; and application requirements engineering,
application design and application implementation, guided by the MAAEM
methodology.

2.1.1 The MADEM phases

The domain analysis phase of MADEM approaches the construction of a domain model
specifying the current and future requirements of a family of applications in a domain by
considering domain knowledge and development experiences extracted from domain
specialists and applications already developed in the domain, including products of the
Multi-agent Application Engineering sub-process.

 This phase consists of the following modeling tasks: modeling of domain
concepts, goal modeling, role modeling, role interaction modeling and user interface
prototyping. The product of this phase, a domain model, is obtained through the

composition of the products constructed through these tasks: a concept model, a goal
model, a role model, a set of role interaction models, one for each specific goal in the
goal model and a prototype of the user interface. Next section details the domain
analysis tasks and products.

Figure 2. The MADAE-Pro Lifecycle

 The domain design phase of MADEM approaches the architectural and detailed
design of multi-agent frameworks providing a solution to the requirements of a family
of multi-agent software systems specified in a domain model. This phase consists of two
sub-phases: the architectural design sub-phase which establishes an architectural model
of the multi-agent society including the knowledge shared by all agents in their
communication and their coordination and cooperation mechanisms; and the agent
design sub-phase which defines the internal design of each reactive or deliberative
agent, by modeling its structure and behavior. A Multi-agent Framework Model of the
Multi-agent Society is constructed as a product of this phase, composed of a Multi-agent
Society Knowledge Model, an Architectural Model and a set of Agent Models.

 The domain implementation phase of MADEM approaches the mapping of
design models to agents, behaviors and communication acts, concepts involved in the
JADE/JESS framework [Bellifemine, F. et al. 2003] [Friedman-Hill, E. 2003], which is
the adopted implementation platform. An implementation model of the multi-agent
society is constructed as a product of this phase, composed of a model of agents and
behaviors and a model of communication acts.

2.1.2 The MAAEM phases

MAAEM is a methodology for requirement analysis, design and implementation of
multi-agent applications through compositional reuse of software artifacts such as
domain models, multi-agent frameworks, pattern systems and software agents
previously developed in the MADEM Domain Engineering process.

 The requirements analysis phase of MAAEM looks for identifying and
specifying the requirements of a particular application by reusing requirements already
specified in domain models. This phase follows a set of modeling tasks consistently
uniform with the ones of the MADEM domain analysis phase, for producing a set of
models composing the multi-agent requirements specification of the application. The
MAAEM requirements analysis phase is performed through the following modeling
tasks: concept modeling, goal modeling, role modeling, role interaction modeling and
user interface prototyping. The product of this phase, an application specification, is
obtained through the composition of the products constructed through these tasks: a
concept model, a goal model, a role model, a set of role interaction models, one for each
specific goal in the goal model and a prototype of the user interface. Next section details
the requirements analysis tasks and products.

 In the application design phase, developers reuse design solutions of a family of
applications and adapt them to the specific requirements of the application under
development. A set of models composing the multi-agent application architecture are
produced by following a set of modeling tasks consistently uniform with the ones of the
MADEM domain design phase. This phase consists of two tasks: the Architectural
Design task aiming at constructing a multi-agent society architectural model and the
Agent Design task, which defines the internal structure of each reactive or deliberative
agent in the society. The Architectural Design task consists of four sub-tasks: Multi-
agent Society Knowledge Modeling, Multi-Agent Society Modeling, Agent Interaction
Modeling, and Coordination and Cooperation modeling.

 In the application implementation phase, agent behaviors and interactions are
identified and specified in a particular language/platform for agent development. A
Behaviors Model and Communication Acts Model are generated in this development
phase.

 Along all MAAEM phases, reuse is carried out by identifying variation points in
MADEM products and selecting appropriate variants.

2.2. The ONTORMAS Tool

ONTORMAS [Leite, A., Girardi, R. and Cavalcante, U. 2008a] is a knowledge-based
system whose knowledge base is an ontology which conceptualizes the MADAE-Pro
methodologies. It guides the modeling tasks and representation of their generated
products as instances of its class hierarchy.

 Ontologies [Gruber, T. R. 1995] provide an unambiguous terminology that can
be shared by all involved in a software development process. They can also be as
generic as needed allowing its reuse and easy extension. These features turn ontologies
useful for representing the knowledge of software engineering techniques and

methodologies, and an appropriate abstraction mechanism for the specification of high-
level reusable software artifacts like domain models, frameworks and software patterns.

 ONTORMAS was developed in a two phase development process: the
specification and the design of the ontology. In the specification phase, a
conceptualization of MADEM and MAAEM where represented in a semantic network.
In the design phase, concepts and relationships in the semantic network were mapped to
a frame-based ontology in Protégé [Gennari, J. et al. 2002]. A graphical notation was
defined for the representation of each modeling product.

 The ONTORMAS ontology consists of a set of classes organized hierarchically,
with the main super classes (Figure 3): "Variable Concepts," "Modeling Concepts,"
"Modeling Tasks" and "Modeling Products". The super class "Variable Concepts" and
corresponding subclasses are used to specify the variability of a multi-agent system
family. This is accomplished through the definition of “Variation Points" and
"Variants". A variation point represents a variable concept. A variant represents the
alternative or optional variations of such concept. The super class "Modeling Concepts"
specifies the modeling concepts of the MADEM and MAAEM methodologies. In the
super class "Modeling Tasks" and corresponding subclasses, the MADEM and
MAAEM modeling tasks are defined.

 As an example, Figure 4 illustrates the representation of the tasks performed in
the phases of Domain Analysis and Application Requirements Analysis. These tasks
consist of the "Domain Engineering Tasks", which subtasks are related to the MADEM
methodology and the "Application Engineering Tasks", related to the MAAEM
methodology. The super class "Modeling Products" and corresponding subclasses define
the MADEM and MAAEM products. Products can be simple or composed of sub-
products. For instance, Figure 5 illustrates the classes and instance examples of the goal
models produced by both MADEM and MAAEM.

 The products of MADEM and MAAEM are represented as instances of the
corresponding concepts in the ONTORMAS class hierarchy, having each modeling
concept a particular graphical notation. This facilitates not only the instantiation process
but also contributes for reducing the complexity of the modeling tasks allowing the
visualization, decomposition and refinement of the modeling products. Figure 6
illustrates the creation of the ONTOSERS domain model and their respective sub-
products. For that it was required the instantiation of the "Modeling Tasks" sub-classes
("Concept Modeling", "Goal Modeling," "Role Modeling", "Role Interaction Modeling"
and "User Interface Prototyping") and the corresponding "Modeling Products” sub-
classes ("Concept Model", "Goal Model", "Role Model", "Role Interaction Models" and
"Prototype of the User Interface").

Figure 3. Semantic network illustrating main modeli ng concepts of MADEM and
MAAEM

Figure 4. Semantic Network of the tasks and subtask s of the Analysis Phase of
MADEM and MAAEM

Figure 5. Relationships between classes and instanc es of modeling products

Figure 6. Instantiation Process of ONTORMAS for th e ONTOSERS Domain Model
creation

3. The Domain Analysis and Application Requirements Engineering Tasks

This section describes the Domain Analysis and Application Requirements Engineering
tasks of MADAE-Pro showing how the software artifacts of the ONTOSERS domain
model [Mariano, R. at al. 2008] are produced and reused on the development of the
InfoTrib multi-agent recommender system [Mariano, R. 2008].

 ONTOSERS-DM is a domain model that specifies the common and variable
requirements of recommender systems based on the ontology technology of the
Semantic Web [Shadbolt, Hall and Berners-Lee 2006], using three informaton filtering
approaches: content-based (CBF), collaborative (CF) and hybrid filtering (HF). InfoTrib
is a tax law recommender system in which, based on a user profile specifying his/her
interests in the diverse types of taxes, the system provides recommendations based on
new tax law information items.

 Figure 7 shows a refinement of the MADAE-Pro lifecycle, detailing the tasks
and products of the Domain Analysis (see Section 3.1) and Application Requirements
Engineering phases (see Section 3.2).

Figure 7. The Domain Analysis and Application Requi rements Engineering

Phases of MADAE-Pro

3.1. The Domain Analysis Tasks of MADAE-Pro

The concepts modeling task aims at just performing a brainstorming of domain
concepts and their relationships, representing them in a concept model.

The purpose of the goal modeling task is to identify the common and variant
goals of the family of systems, the stakeholders with which it cooperates and the
responsibilities needed to achieve them. Its product is a goal model, specifying the
general and the system family hierarchy of specific goals along with the stakeholders,
responsibilities and variant groups. In this task, variability modeling looks for
identifying variant points in specific goals related with variant groups of responsibilities.
 As an example, Figure 8 represents the goal model of ONTOSERS. The
“Provide Recommendations using Semantic Web Technology” general goal is reached
through the “Model Users”, “Filter Information” and “Deliver Recommendations”
specific goals. In order to achieve the “Filter Information” specific goal, it is necessary
to perform the “Ontology Instance User Model Creation and Update” responsibility,
which also contributes to reach the “Model Users” specific goal. Besides that, the
“Grouping of user models”, “Information Items based on Ontology Instance
Representation” and “Similarity Analysis” responsibilities are needed. The “Grouping
of Users Models” responsibility allows for identifying groups of users with similar
interests.
 The “Model Users” specific goal has a variation point with groups of
responsibilities for user profile acquisition, being possible to choose between three
alternative variants: “Implicit Profile Acquisition”, “Explicit Profile Acquisition” or
both. The last responsibility, “Ontology Instance User Model Creation and Update” is
fixed, i.e. it is required in all the applications of the family. The “Filter Information”
specific goal has a variation point that has as variant alternatives: the “Grouping of users
models” responsibility, required in systems that use CF; and the “Information Items
based on Ontology Instance Representation” responsibility required in the ones using
CBF. The “Deliver Recommendations” specific goal does not have variation points,
therefore the “Similarity Analysis”, “Personalized Recommendations Production” and
“Delivery of Personalized Recommendations” responsibilities are required in all the
applications of the family, then belonging to the fixed part of the goal model.

Figure 8. The ONTOSERS Goal Model

 Figure 9 shows the variants of the specific goal "Model users" in the
ONTOSERS domain model. The “Model Users” specific goal has a variation point with
groups of responsibilities for user profile acquisition, being possible to choose between
three alternative variants: “Implicit Profile Acquisition”, “Explicit Profile Acquisition”
or both.

 The role modeling task associates the responsibilities, either common or
variants, identified in the goal modeling task to the roles that will be in charge of them.
The pre and post-conditions that must be satisfied before and after the execution of a
responsibility are also identified. Finally, the knowledge required from other entities
(roles or stakeholders) for the execution of responsibilities and the knowledge produced
from their execution is identified. This task produces a set of role models, one for each
specific goal or, having it one or more variation points, one role model for each variant,
specifying roles, responsibilities, pre- and post-conditions, knowledge and relationships
between these concepts.

Figure 9. The variation point of the specific goal "Model users" and the
alternative groups of responsibilities variants

 Figure 10 shows some role variants in the role models of the ONTOSERS
domain model produced through variability modeling of the role modeling task. For
each group of responsibilities in an alternative variant of Figure 9 a role model is
developed. For instance, Figure 10 shows the semantic relationships relating the role
“User Monitor”, derived from the “Implicit profile acquisition” responsibility and from
the groups of alternative responsibilities in the “Implicit User Modeling Group” and
“Implicit-Explicit User Modeling Group” variants of Figure 9 to the alternative role
models “Implicit User Modeling ONTOSERS Role Model” and “Implicit-Explicit User
Modeling ONTOSERS Role Model”.

 Figure 11 shows an example of a variant role interaction model of the
ONTOSERS domain model produced through variability modeling of the role
interactions modeling task. For each alternative variant in Figure 9 a role interaction
model is developed. Figure 11 shows the role interaction model with the interactions
between roles and stakeholders needed to accomplish the ‘Model user” specific goal
under the variant “Implicit-Explicit User Modeling Group” of Figure 9. The Monitor

role captures user navigational behavior. A user profile, acquired implicitly, is
transferred to the “User Modeler” role so that it can create a user model. Another
alternative is explicit profile acquisition in which the user explicitly specifies his/her
interests through the “Input Interface” role that sends the profile to the “User Modeler”
role.

 Finally, a reusable user interface prototype is developed by identifying the
interactions of users with the system family.

3.2. The Application Requirements Engineering Tasks

In this phase, reuse of domain models is supported by the ONTORMAS tool. In
ONTORMAS, the selection of software artifacts is supported by semantic retrieval,
where the user inputs a query specifying the product features he/she intends to reuse and
gets from the repository the available artifacts satisfying his/her query. After the
selection of the artifact that most closely matches their needs, users should check if the
artifact can be integrally reused or if it needs adaptations and/or integrations with other
artifacts.

 The concepts modeling task aims at performing a brainstorming of the
application concepts and their relationships, representing them in a concept model.

 The purpose of the goal modeling task is to identify the goals of the application,
the stakeholders with which it cooperates and the responsibilities needed to achieve
them. Its product is a goal model, specifying the general and specific goals of the
application along with the stakeholders and responsibilities. This task should be reuse-
intensive. From the concept model and from a first draft of the goal model, possible
terms for searching and reusing goals in already available domain models can be
revealed.

 If a general goal is identified, the corresponding goal model in a domain model
is selected for reuse. If a specific goal is identified, this goal, sub-goals in a possible
hierarchy, related responsibilities and stakeholders in a goal model of a domain model
are selected for reuse. Otherwise, the goal model is constructed from scratch.

 If a selected specific goal or sub-goals in its hierarchy have associated variation
points, they should be analyzed to select and possible reuse the appropriate variants of
alternative or optional groups of responsibilities by considering both functional and non-
functional requirements of the specific application. Only one group of responsibilities in
an alternative variant can be selected for reuse. Zero or more groups of responsibilities
in an optional variant can be selected for reuse.

 Figure 13 illustrates the goal model of InfoTrib. To construct it, first, a semantic
search in the ONTORMAS knowledge base with the term “recommendation” was done
(Figure 12). The general goal “Provide recommendations using semantic web
technologies” was retrieved through the search. Therefore, the corresponding goal
model was selected for reuse, in this case, the goal model of ONTOSERS (Figure 8),
part of the ONTOSERS domain model. From the variation point of the “Model users”
specific goal (Figure 9), the ”Explicit profile acquisition” responsibility variant was
selected in order to support just the functional requirement of explicit acquisition of
user profiles.

Figure 10. Variability modeling of the role modelin g task: the variant roles in the
alternative role models

Figure 11. Role Interaction Model of the “Model Use rs” Specific Goal under the

variant “Implicit-Explicit User Modeling Group”

 From the variation point of the “Filter Information” specific goal, the
“Information Items based on Ontology Instance Representation” responsibility variant
was selected for providing content-based information filtering. The name of the external
entity “Ontology based information source” was specialized to “ONTOTRIB”, the
ontology that defines the Tax Law concepts and relationships.

Figure 12. A simple query for general goals in ONTO RMAS

Figure 13. The Goal Model of INFOTRIB

 The role modeling task associates the responsibilities identified in the goal
modeling task to the roles that will be in charge of them. The pre and post-conditions
that must be satisfied before and after the execution of a responsibility are also
identified. Finally, the knowledge required from other entities (roles or stakeholders) for
the execution of responsibilities and the knowledge produced from their execution is
identified. A set of role models, one for each specific goal in the goal model is
constructed in this task, with or without reuse.

 The following rules apply for the reuse activities performed during this modeling
task:

• If a similar general goal is identified during the goal modeling task, thus reusing
fully or partially a goal model then, the set of role models, already available in
the corresponding domain model and associated to each reused specific goal,
will be reused and eventually adapted for the previously customized specific
goals and selected responsibilities from groups of alternative or optional
variants.

• Otherwise, if a set of similar specific goals are identified during the goal
modeling task, thus reusing partially a goal model, then the set of role models
already available in the corresponding domain model, associated with the similar
specific goal will be reused and eventually adapted, considering selected
responsibilities from groups of alternative or optional variants.

• Otherwise, if the goal model is constructed from scratch, then the set of role
models will be also constructed from scratch, one for each specific goal.

 Please note that, in this task, reuse is implicitly supported by the semantic
relationships that associate a specific goal with a role model.

 For instance, in the example of Figure 13, a similar general goal was identified
during the goal modeling task, thus reusing partially a goal model, having the “Explicit
profile acquisition” responsibility variant associated to the “Model users” specific goal
variation point and the “Information Items based on Ontology Instance Representation”
responsibility variant associated to the “Filter Information” specific goal variation point.
Then, the set of role models, already available in the ONTOSERS domain model and
associated to each reused specific goal and selected variants will be reused.

 The role interaction modeling task aims at identifying how external and internal
entities should cooperate to achieve a specific goal. For that, responsibilities of roles are
analyzed along with their required and produced knowledge specified in a role model. A
set of role interaction models is reused in this modeling task, one for each specific goal.
The interactions are numbered according to their sequencing. Similar rules to the ones
of the role modeling task apply for the reuse activities performed during this modeling
task.

 For the construction of the user interface prototype of the specific application,
the generic interfaces associated to a reused external entity are selected and customized
according to the specific goal with which it is related.

4. Related Work

Several approaches for agent-oriented software development, like GAIA [Zambonelli,
F., Jennings, N. and Wooldridge, M. 2003], PASSI [Cossentino, M. et al. 2004] and
TROPOS [Bresciani, P. et al. 2004] and some domain engineering processes [Nunes, I.
et al. 2009], have been already developed to increase the productivity of the software
development process, the reusability of generated products, and the effectiveness of
project management.

 GAIA is a methodology based in human organization concepts. It supports the
analysis and design phases of multi-agent system development. Tropos is an agent-
oriented software development methodology supporting the complete multi-agent
development process. It is based on the i* organizational modeling framework. PASSI is
a process for multi-agent development integrating concepts from object-oriented
software engineering and artificial intelligence approaches. It allows the development of
multi-agents systems for special purposes as mobiles and robotics agents and uses an
UML-based notation. In [Nunes, I. et al. 2009] is described a domain engineering
process which focuses on system families including domain scoping and variability
modeling. This process integrates a product line UML-based method, the PASSI
methodology and a modeling language for developing multi-agent system product lines.

 Table 1 summarizes and compares some characteristics of GAIA, PASSI,
TROPOS, MADAE-Pro and the domain engineering process described above. All the
approaches propose an iterative life cycle, where a software product follows several
refinements during the development process. With the exception of GAIA, in all other

approaches the life cycle is also incremental, where a software product is represented in
several models to facilitate its understanding.

 For the supported development phases, all these approaches cover analysis and
design while PASSI, TROPOS and MADAE-Pro also support the implementation
phase. The domain engineering process described above covers the domain engineering
phases of early and late requirements, domain design and domain realization. To our
knowledge, only MADAE-Pro provides support for both domain and application
engineering.

 For the available development tools, PASSI is supported by PTK, a Rational
Rose plug-in allowing modeling in AUML and code generation. The application of
TROPOS is assisted by the TAOM-Tool [Perini, A. and Susi, A. 2004], an Eclipse
plug-in allowing system modeling with the i* framework. The MADAE-Pro process is
supported by the ONTORMAS tool that allows the modeling and storage of individual
applications and families of multi-agent applications as instances of the ONTORMAS
ontology. GAIA does not report a tool support yet.

 For reuse activities, GAIA and TROPOS allow the reuse of models and code in
an informal way. PASSI permits the reuse of source code from class and activity
diagrams. The domain engineering process described in [Nunes, I. et al. 2009] is based
on the concept of “feature”, a system property relevant to some stakeholder, used to
capture commonalities and to discriminate products in software product lines. However,
this process does not offer guidelines for the selection, adaptation and integration of
software artifacts. MADAE-Pro process allows reuse of both models and source code of
software products giving support for their selection, adaptation and integration.

 For the variability modeling support, only MADAE-Pro and the domain
engineering process described in [Nunes, I. et al. 2009] support it. This approach uses an
extension of UML for modeling variabilities [Goma, H. 2005] while MADAE-Pro uses
MADAE-ML, an ontology-driven modeling language.

Table 1. A comparison of agent-oriented software de velopment approaches

 Two main features distinguish MADAE-Pro from other existing approaches.
First, it provides support for reuse in multi-agent software development, through the
integration of the concepts of Domain Engineering and Application Engineering.
Second, it is a knowledge-based process where models of agents and frameworks are
represented as instances of the ONTORMAS ontology. Thus, concepts are semantically
related allowing effective searches and inferences thus facilitating the understanding and
reuse of models during the development of specific applications in a domain. Also, the
ontology-driven models of MADAE-Pro can be easily documented, adapted and
integrated.

5. Conclusion and Further Work

This work described MADAE-Pro, a knowledge-based process model for Multi-agent
Domain and Application Engineering, emphasizing the description of its domain
analysis and application requirements engineering phases, showing how software
artifacts produced on the first phase are reused in the last one.

 The SPEM process modeling language has been used to formalize the process,
thus providing a standard, documented and ambiguity free representation of MADAE-
Pro. The formalization of MADAE-Pro has allowed the systematic application of its life
cycle along with the MADEM and MAAEM methodologies for the construction of
multi-agent system families and specific multi-agent applications as well. Also, this
formal model provides a basic framework for automating the MADAE-Pro development
tasks.

 The ONTORMAS tool helps developers on the systematic application of the
MADAE-Pro process. The software artifacts produced through its modeling tasks are
instantiated in the ONTORMAS knowledge base, which it is used as a repository of
reusable software artifacts. The semantic representation of software products increase
reuse effectiveness, providing more precision on software retrieval.

 MADAE-Pro has been evaluated with case studies approaching both the
development of application families [Girardi, R. and Marinho, L.2007] [Mariano, R. at
al. 2008] and specific applications [Drumond, L. and Girardi, R. 2008] [Nunes, I. et al.
2009][Newton, E. and Girardi, R. 2007]. The process proved to be suitable for the
identification and representation of the fixed and variable parts of software abstractions
of the ONTOSERS family, thus making possible its reuse on the development of
specific applications [Mariano, R. 2008].

 MADAE-Pro is part of a project for the improvement of multi-agent
development techniques, methodologies and tools. With the knowledge base provided
by ONTORMAS, an expert system is being developed, aiming at automating various
tasks of both MADEM and MAAEM, thus allowing fast application development and
partial code generation.

 MADAE-Pro currently supports compositional reuse, based on the selection,
adaptation and composition of software artifacts. A generative approach for reuse has
been explored with the specification of the GENMADEM methodology and the
ONTOGENMADEM tool [Jansen, M. and Girardi, R. 2006]. ONTOGENMADEM
provides support for the creation of Domain Specific Languages to be used on the

generation of a family of applications in a domain. Further work will extend
ONTORMAS for supporting ONTOGENMADEM allowing generative reuse in Multi-
agent Application Engineering.´

 Also, to evaluate MADAE-Pro, it is being planned the development of new
application families and specific applications in other domains of interest.

References

Arango, G. (1988). “Domain Engineering for Software Reuse”. Ph.D. Thesis.
Department of Information and Computer Science, University of California, Irvine.

Bellifemine, F., Caire, G. Poggi A. and Rimassa, G. (2003) “JADE A White Paper”.
Exp v. 3 n. 3, Sept., http://jade.tilab.com/

Bresciani, P., Giorgini, P., Giunchiglia, F., Mylopoulos, J. and Perini, A. (2004)
“TROPOS: An Agent-Oriented Software Development Methodology”, In: Journal of
Autonomous Agents and Multi-Agent Systems, Kluwer Academic Publishers
Volume 8, Issue 3, pp. 203-236.

Cossentino, M., Sabatucci, L., Sorace, S. and Chella, A. (2004) “Patterns reuse in the
PASSI methodology”. In: Proceedings of the Fourth International Workshop
Engineering Societies in the Agents World (ESAW'03), Imperial College London,
UK, pp. 29-31.

Czarnecki, K., Eisenecker, U. W. (2000) “Generative Programming: Methods, Tools,
and Applications”. ACM Press/Addison-Wesley Publishing Co., New York, NY,
2000.

Dileo, J., Jacobs, T. and Deloach, S. (2002) “Integrating Ontologies into Multi-Agent
Systems Engineering”. Proceedings of 4th International Bi-Conference Workshop on
Agent Oriented Information Systems (AOIS 2002), (pp. 15-16). Bologna (Italy).

Drumond, L. and Girardi, R. (2008) “A Multi-agent Legal Recommender System”.
Artificial Intelligence and Law (Dordrecht), March, pp. 175-207.

Friedman-Hill, E. (2003). “JESS in Action”. Manning Publications.

Girardi, R. (1992) “Application Engineering: Putting Reuse to Work”. In: Dennis
Tsichritzis (ed.). (Org.). Object Frameworks. Geneve: CUI, v. I, Université de
Geneve, p. 137-149.

Girardi, R. and Marinho, L.(2007) “A Domain Model of Web Recommender Systems
based on Usage Mining and Collaborative Filtering”, Requirements Engineering
Journal, vol.12 n. 1, Ed. Springer-Verlag, p. 23-40.

Gennari, J. et al. (2002). “The evolution of Protégé: An environment for knowledge-
based systems development”, Technical Report SMI-2002-0943.

Girardi, R., Leite, A. (2008). “A Knowledge-based Tool for Multi-Agent Domain
Engineering”. Knowledge-Based Systems, April, p. 604-611.

Goma, H. (2005). “Designing Software Product Lines with UML: From Use Cases to
pattern-based Software Architectures”, Addison-Wesley Object Technology Series.

Gruber, T. R. (1995) “Toward Principles for the Design of Ontologies used for
Knowledge Sharing, International Journal of Human-Computer Studies”. Nº 43,
1995, pp. 907-928.

Harsu, M. (2002) “A Survey of Domain Engineering”. Report 31, Institute of Software
Systems, Tampere University of Technology, December.

Jansen, M. and Girardi, R. (2006) “GENMADEM: A Methodology for Generative
Multi-agent Domain Engineering”. In: Proceedings of the 9th International
Conference on Software Reuse, Torino. Lecture Notes in Computer Science (LNCS),
v. 4039. Berlin: Springer-Verlag, p. 399-402.

Leite, A., Girardi, R. and Cavalcante, U. (2008a) “An Ontology for Multi-Agent
Domain and Application Engineering”. In: Proceedings of the 2008 IEEE
International Conference on Information Reuse and Integration (IEEE IRI-08), Las
Vegas, 2008, pp. 98-103.

Leite, A., Girardi, R. and Cavalcante, U. (2008b) “MAAEM: A Multi-agent Application
Engineering Methodology”. In: Proceedings of the 20th International Conference on
Software Engineering and Knowledge Engineering, Redwood City. Knowledge
Systems Institute, pp. 735-740.

Mariano, R., Girardi, R., Leite, A., L. Drumond and D. Maranhão, A. (2008) “Case
Study on Domain Analysis of Semantic Web Multi-agent Recommender Systems”.
In: Proceedings 3th International Conference on Software and Data Technologies,
Porto. Portugal, p. 160-167.

Mariano, R. (2008) “Development of a Family of Recommender Systems based on the
Semantic Web Technology and its Reuse on the Recommendation of Legal Tax
Information Items”, Master Dissertation, Federal University of Maranhão, São Luís.
(In Portuguese)

Newton, E. and Girardi, R. (2007) “PROPOST: A knowledge-based tool for supporting
Project Portfolio Management”. In: International Conference on Systems Engineering
and Modeling - ICSEM'07, Haifa. Proceedings of ICSEM'07, p. 98-103.

Nunes, I., Kulesza, U., Nunes, C. and Lucena, C. A. (2009) “A Domain Engineering
Process for Developing Multi-Agent Systems Product Lines”. Proceedings of the 8th
International Conference of Autonomous Agents and Multi-agent Systems (AAMAS
2009), Budapest, pp. 10-15.

Odell, J., Parunak, H. V. D. and Bauer, B. (2000) “Extending UML for Agents. Proc. of
the Agent-Oriented”, Information Systems Workshop at the 17th National
Conference on Artificial Intelligence, pp. 3-17.

Perini, A. and Susi, A. (2004) “Developing Tools for Agent-Oriented Visual Modeling.
In G. Lindemann”, Multi-agent System Technologies, Proceedings of the Second
German Conference, MATES 2004, number 3187 in LNAI, Springer-Verlag, pp.
169–182.

Pohl, K., Bockle, G. and Linden, F. (2005) “Software Product Line Engineering:
Foundations, Principles and Techniques”, Springer Verlag, USA.

SPEM - Software Process Engineering Metamodel Specification, Available at:
http://www.omg.org/cgi-bin/doc?formal/02-11-14.pdf, Last access, Dez., 2010.

Shadbolt, N., Hall, W., Berners-Lee, T. (2006) “The semantic web revisited”. In:

 Intelligent Systems, vol. 21, n. 3, pp. 96–101.

Zambonelli, F., Jennings, N. and Wooldridge, M. (2003) “Developing multi-agent
systems: The Gaia methodology”. ACM Transactions on Software Engineering and
Methodology, pp. 417-470.

