Avaliação dos tióis proteicos ao longo da maturação de grãos de trigo em genótipos de diferentes aptidões tecnológicas

Carolina Thomaz dos Santos D'Almeida, Millena Cristina Barros Santos, Sónia Kristy Pinto Melo Rodrigues, Luciana Ribeiro da Silva Lima, Mariana Simões Larraz Ferreira

Resumo


O trigo é considerado a matéria-prima mais adequada para a fabricação de pães e massas devido à sua viscoelasticidade, determinada pela qualidade do glúten. Apesar do conhecido impacto dos polímeros de glúten na qualidade do trigo, a dinâmica da formação das pontes dissulfeto, por meio da oxidação dos tióis das cisteínas (PSH), não está completamente elucidada. Este trabalho objetivou o estudo da evolução do estado redox dos PSH de 8 genótipos de trigo (Triticum aestivum) brasileiro ao longo da maturação do grão (estádios leitoso, pastoso, maturação fisiológica, maduro e farinha). Os grãos foram caracterizados quanto ao peso médio, umidade, proteínas totais e PSH pelo método de DTNB. Os grãos maduros apresentaram em média 12% de umidade, 15% de proteína e peso seco de 34,0±2,1 mg/grão. Os teores de PSH variaram de 2,2-8,6 μmol/g (leitoso), 1,7-7,2 μmol/g (pastoso) a 1,0-3,4 μmol/g (maturação fisiológica). Em grãos maduros e farinhas, o teor de PSH foi similar para todas as amostras (2,3±0,6 µmol/g; <2 µmol/g, respectivamente). Três genótipos apresentaram oxidação excessiva nos estádios imaturos. As demais amostras apresentaram um declínio progressivo no teor de PSH, corroborando a literatura e confirmando o envolvimento destes nas pontes dissulfetos intermoleculares de acordo com o desenvolvimento do grão.


Palavras-chave


tióis; trigo; pontes dissulfeto; grupamento sulfidrila

Texto completo:

PDF

Referências


EMBRAPA. Empresa Brasileira de Pesquisa Agropecuária. 2016.

FAOSTAT. OECD-FAO Agricultural Outlook 2018-2027. 2018. p. 109 - 25.

ABITRIGO. Associação Brasileira das Indústrias de Trigo. 2018.

Shewry PR. Wheat. J Exp Bot. 2009;60(6):1537-53.

FAOSTAT. Food and Agricultural organization of the United Nations. 2017.

MAPA. Ministério da Agricultura, Pecuária e Abastecimento. 2017.

TORRES GAMS, A.; GAMBIM, E.; TOMAZIN, T. . Proteínas de reserva do trigo: gluteninas.; 2009. Contract No.: 117.

Wrigley CW. Giant proteins with flour power. Nature. 1996;381(6585):738-9.

Naeem HA, MacRitchie F. Polymerization of glutenin during grain development in near-isogenic wheat lines differing at Glu-D1 and Glu-B1 in greenhouse and field. Journal of Cereal Science. 2005;41(1):7-12.

Delcour JA, Joye IJ, Pareyt B, Wilderjans E, Brijs K, Lagrain B. Wheat Gluten Functionality as a Quality Determinant in Cereal-Based Food Products. Annu Rev Food Sci Technol. 2012;3:469-92.

Popineau Y, Cornec M, Lefebvre J, Marchylo B. Influence of high M r glutenin subunits on glutenin polymers and rheological properties of glutens and gluten subfractions of near-isogenic lines of wheat Sicco. Journal of Cereal Science. 1994;19(3):231-41.

Joye IJ, Lagrain B, Delcour JA. Use of chemical redox agents and exogenous enzymes to modify the protein network during breadmaking – A review. Journal of Cereal Science. 2009;50(1):11-21.

Singh H, MacRitchie F. Application of Polymer Science to Properties of Gluten. Journal of Cereal Science. 2001;33(3):231-43.

Ferreira MSL, Samson M-F, Bonicel J, Morel M-H. Relationship between endosperm cells redox homeostasis and glutenin polymers assembly in developing durum wheat grain. Plant Physiology and Biochemistry. 2012;61:36-45.

Ferreira MSL, Bonicel J, Rosa NN, Samson MF, Morel MH, editors. How are gluten polymers assembled during grain filling in durum wheat? Gluten proteins 2009, Xth International Gluten Workshop; 2009; Clermont-Ferrand, France.

Osipova SV, Permyakova MD, Permyakov AV. Role of Non-prolamin Proteins and Low Molecular Weight Redox Agents in Protein Folding and Polymerization in Wheat Grains and Influence on Baking Quality Parameters. 2012.

Victorio VCM, Souza GHMF, Santos MCB, Vega AR, Cameron LC, Ferreira MSL. Differential expression of albumins and globulins of wheat flours of different technological qualities revealed by nanoUPLC-UDMSE. Food Chemistry. 2018;239:1027-36.

AACC. Approved Methods of Analysis. 11ª ed ed. MN, U.S.A: S. P. AACC International; 2010.

BRASIL. Instrução normativa n° 8, 03 jun. 2005. Regulamento Técnico de Identidade e Qualidade da Farinha de Trigo.: Diário Oficial da República Federativa do Brasil; 2005. p. 91.

AACCI. Approved methods. In 10th ed.). Minneapolis, MN: American Association of Cereal Chemists International. 2000.

Morel MH, Bonicel J. New investigations of disulphide bounds of wheat proteins by dithioerythritol (DTE) reduction. In C. W. Wrigley (Ed.) ed. Royal Australian Chemical Institute: Melbourne, Australia: Proceedings of the Sixth International Gluten Workshop; 1996. p. 257-61.

Dupont FM, Altenbach SB. Molecular and biochemical impacts of environmental factors on wheat grain development and protein synthesis. Journal of Cereal Science. 2003;38(2):133-46.

Ferreira MSL, Martre P, Mangavel C, Girousse C, Rosa NN, Samson M-F, et al. Physicochemical control of durum wheat grain filling and glutenin polymer assembly under different temperature regimes. Journal of Cereal Science. 2012;56(1):58-66.

Faroni LRD, Berbbert PA, Martinazzo AP, Coelho EM. Qualidade da farinha obtida de grãos de trigo fumigados com dióxido de carbono e fosfina. Revista Brasileira de Engenharia Agrícola e Ambiental. 2002;6(1807-1929):354-7.

Costa MS, Scholz MBdS, Franco CML. Effect of high and low molecular weight glutenin subunits, and subunits of gliadin on physicochemical parameters of different wheat genotypes. Food Science and Technology. 2013;33(0101-2061):163-70.

Denčić S, Mladenov N, Kobiljski B. Effects of genotype and environment on breadmaking quality in wheat. International Journal of Plant Production. 2011;5:71-82.

Iametti S, Bonomi F, Pagani MA, Zardi M, Cecchini C, D'Egidio MG. Properties of the protein and carbohydrate fractions in immature wheat kernels. J Agric Food Chem. 2006;54(26):10239-44.

Grimwade B, Tatham AS, Freedman RB, Shewry PR, Napier JA. Comparison of the expression patterns of genes coding for wheat gluten proteins and proteins involved in the secretory pathway in developing caryopses of wheat. Plant molecular biology. 1996;30(5):1067-73.

Katagiri M, Masuda T, Tani F, Kitabatake N. Expression and Development of Wheat Proteins during Maturation of Wheat Kernel and the Rheological Properties of Dough Prepared from the Flour of Mature and Immature Wheatd from the Flour of Mature and Immature Wheat. Food Science and Technology Research. 2011;17(2):111-20.

Zhen S, Dong K, Deng X, Zhou J, Xu X, Han C, et al. Dynamic metabolome profiling reveals significant metabolic changes during grain development of bread wheat (Triticum aestivum L.). Journal of the Science of Food and Agriculture. 2016;96(11):3731-40.

Wang N, Ma S, Li L, Zheng X. Aggregation characteristics of protein during wheat flour maturation. J Sci Food Agric. 2018.

Bressiani J, Gutkoski LC. Qualidade da farinha de trigo de grão inteiro em resposta a influência de diferentes tamanhos de partículas: Universidade de Passo Fundo; 2016.

Tea I, Genter T, Violleau F, Kleiber D. Changes in the glutathione thiol-disulfide status in wheat grain by foliar sulphur fertilization: consequences for the rheological properties of dough. Journal of Cereal Science. 2005;41(3):305-15.

Ferreira MSL, Mangavel C, Rogniaux H, Bonicel J, Samson M-F, Morel M-H. A MALDI-TOF based study of the in-vivo assembly of glutenin polymers of durum wheat. Food Research International. 2014;64:89-99.

Rhazi L, Cazalis R, Lemelin E, Aussenac T. Changes in the glutathione thiol-disulfide status during wheat grain development. Plant Physiology and Biochemistry. 2003;41(10):895-902.

Santos MCB, Lima LRdS, Nascimento FR, Nascimento TPd, Cameron LC, Ferreira MSL. Metabolomic approach for characterization of phenolic compounds in different wheat genotypes during grain development. Food Research International. 2018.


Apontamentos

  • Não há apontamentos.


Direitos autorais 2019 Revista de Alimentação, Nutrição e Saúde