

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Tools Integration for Supporting Software
Measurement: A Systematic Literature Review

Vinícius Soares Fonseca Monalessa Perini Barcellos Ricardo de Almeida Falbo

Ontology and Conceptual Modeling Research Group (NEMO)
Computer Science Department, Federal University of Espírito Santo

Vitória, ES, Brazil
{vsfonseca, monalessa, falbo}@inf.ufes.br

Abstract. Software measurement (SM) is a key area to support process quality
improvement and project management. Due to the nature of the measurement
activities, tool support is essential. Tools can be combined to support the SM
process and provide necessary information for decision making. However,
tools are usually developed without concern for integration. As a result,
organizations have to deal with integration issues to enable communication
between tools. Aiming at investigating studies in the literature that report
initiatives involving tool integration for supporting SM, we performed a
systematic literature review. Twelve initiatives were found. This paper
presents the results of the systematic review and discusses the main findings.

1. Introduction

Software measurement (SM) is a process applied by organizations in several contexts.
For instance, in project management, software measurement is used to develop
realistic plans, to monitor the progress of projects, to identify problems and to justify
decisions [McGarry et al. 2012]. In process improvement initiatives, measurement
supports analyzing process behavior, identifying needs for improvement and
predicting if processes will be able to achieve the established goals [Florac and
Carleton 1999].

 Fenton and Pfleeger (1997) state that measuring software products, processes
and projects is crucial for software organizations, because measures quantify
attributes and allow people to get relevant information about the work done and to be
done. In the context of software projects, developers can use measurement to verify
requirements consistency and completeness, design quality, source code size, defects
and test coverage, among others. Project managers, in turn, can use measurement to
evaluate when the project will be finished and if the budget will be enough. Clients
also can benefit from information provided by measurement. For instance, measures
can be used to show if the final product is in conformance to the established standards
and satisfies the agreed requirements.

 The main purpose of measurement is to provide quantitative information to
support decision making [Fenton and Neil 2000]. In this sense, measurement should
be applied to several software processes (e.g., project management, requirement
engineering, testing, etc.) in order to provide information needed to well-informed
decision making at project and organizational levels.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

 Organizations use different tools to support software processes. For example,
schedule and budget tools can be used to support project management activities,
CASE tools support requirements engineering, and development environments
support implementation and source code management. Despite these tools are not
usually conceived to support software measurement, they can help collect and store
useful data related to the supported processes (e.g., number of defects, time and cost
spent on project activities, number of lines of code, test failure rate, etc.).

 In order to provide consistent data and generate useful information for the
software measurement process, tools should be integrated. However, this is not an
easy task. In general, each tool runs independently and implements its own data and
behavioral models, which are not shared between different tools, leading to several
conflicts [Izza 2009].

 Considering this scenario, we decided to investigate the literature by searching
for initiatives involving tool integration to support software measurement. Aiming to
reduce bias and ensure the study repeatability, in a previous work [Fonseca, Barcellos
and Falbo 2015], we carried out a systematic mapping. Systematic mappings provide
an overview of a research topic considering the evidences about that topic in the
literature [Kitchenham and Charters 2007]. As pointed out by Kitchenham et
al.(2011), a systematic mapping can be used as the starting point for undertaking
systematic literature reviews, reducing the effort required to perform such subsequent
studies. Systematic literature reviews allow a deep investigation concerning more
specific research questions [Kitchenham and Charters 2007].

 In line with Kitchenham et al.(2011), our systematic mapping results revealed
some issues that we decided to explore in depth through a systematic literature
review. In this paper we present and discuss the main results of the systematic
literature review. The paper is organized as follows: Section 2 concerns the paper
background, addressing software measurement and integration; Section 3 talks about
secondary studies and describes the process followed in the performed study; Section
4 addresses the study itself, presenting the research protocol, the obtained results and
some discussions about them; Section 5 discusses some related works; and Section 6
presents our final considerations.

2. Background

2.1. Software Measurement

Software measurement is the continuous process of defining, collecting, and
analyzing data regarding software processes and products in order to understand and
control them, as well as supply meaningful information to their improvement
[Solingen and Berghout 1999]. It is a primary support process for managing projects,
and it is also a key discipline in evaluating the quality of software products and the
performance and capability of organizational software processes [ISO 2007].

 Effective measurement helps software organizations succeed by enabling them
to understand their capabilities, so that they can develop achievable plans for
producing and delivering products and services. Measurement also helps

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

organizations to detect trends and anticipate problems, providing better costs control,
reducing risks, improving quality, and ensuring that business goals are achievable
[Florac and Carleton 1999].

 There are some standards and methodologies devoted to assist organizations in
defining their software measurement processes, such as ISO/IEC 15939 [ISO 2007],
PSM (Practical Software Measurement) [McGarry et al. 2012] and IEEE Std. 1061
[IEEE 1998]. Although there are some differences among them, in general the
software measurement process includes: measurement planning, measurement
execution, and measurement evaluation [ISO 2007].

 For performing software measurement, initially, an organization must plan it.
Based on its goals, the organization has to define which entities (processes, products
and so on) are to be considered for software measurement and which of their
properties (size, cost, time, etc.) are to be measured. The organization has also to
define which measures are to be used to quantify those properties. For each measure,
an operational definition should be specified, indicating, among others, how the
measure must be collected and analyzed. Once planned, measurement can start.
Measurement execution involves collecting data for the defined measures, storing and
analyzing them. Data analysis provides information to decision making, supporting
the identification of appropriate actions. Finally, the measurement process and its
products should be evaluated in order to identify potential improvements [Barcellos,
Falbo and Rocha 2010].

 In addition to standards and methodologies that address the software
measurement process as a whole, there are some proposals that deal with more
specific aspects of the measurement process. In this context, GQM (Goal Question
Metric) [Basili, Rombach and Caldiera 2004] can be highlighted. It represents a
systematic approach for tailoring and integrating goals to software processes, products
and quality perspectives of interest, based upon project and organizational specific
needs [Basili, Rombach and Caldiera 2004]. GQM considers three levels:

• Conceptual Level (Goal): A goal is defined for an object, for a variety of
reasons, with respect to various models of quality, from various points of
view, relative to a particular environment. The objects of measurement are
products (e.g., artifacts, specifications, programs), processes (e.g., designing,
testing) and resources (e.g. software, hardware, personnel).

• Operational Level (Question): A set of questions is used to characterize the
way assessment/achievement of a specific goal will be performed based on
some characterizing model. Questions try to characterize the object of
measurement (product, process, resource) with respect to a selected quality
issue and to determine its quality from the selected viewpoint.

• Quantitative Level (Metric): Measures are associated with each question in
order to answer it in a quantitative way.

 GQM levels are organized in a hierarchical structure starting with a goal. The
goal is refined into several questions that usually break down the issue into its major
components. Each question is then refined into metrics (measures). The same measure

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

can be used to answer different questions under the same goal [Basili, Rombach and
Caldiera 2004].

 While GQM model elaboration starts top-down, measurement data is
interpreted bottom-up. As the measures are defined with an explicit goal in mind, the
information provided by them should be interpreted and analyzed with respect to this
goal, to conclude whether or not it is attained [Solingen and Berghout 1999]. Figure 1
illustrates the GQM hierarchical structure.

Figure 1. GQM model hierarchical structure [Basili, Rombach and Caldiera 2004].

 Park et al. (1996) propose a variation of GQM introducing an “indicator”
definition step, making it GQ(I)M. Indicators are measures directly used to monitor
goal achievement [Barcellos et al., 2013]. They display one or more measurement
results and are designed to communicate or explain the significance of those results
against the established measurement goals. Seeing which measurement data has to be
analyzed (i.e., data collected to which measure) and how they will be displayed help
to point to and clarify exactly what someone must measure [Park, Goethert and Florac
1996]. Figure 2 illustrates GQ(I)M structure.

Figure 2. GQ(I)M structure. Adapted from [Park, Goethert and Florac 1996].

Figure 3 presents examples of GQM and GQ(I)M models (data plotted in the
graph is hypothetical and merely illustrative). In (a), information to monitor the
measurement goal is provided by the measure Annual Cost with Rework. However,
in order to verify if the measurement goal was achieved, it is not enough to look at
data collected for that measure. It is necessary to analyze the difference between
the values related to a year and the previous one. In (b) the indicator directly used
to monitor the measurement goal is explicitly defined (Decreasing of Annual Cost
with Rework) and displayed in a graph in order to show whether the measurement

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

goal was achieved.

Figure 3. GQM and GQ(I)M examples.

2.2. Integration and Interoperability

Integration can be defined as the act of incorporating components into a complete set,
conferring it some expected properties. The components are combined in a way to
form a new system constituting a whole and creating synergy [Izza 2009].

 Interoperability, in turn, can be understood as the ability of applications or
application components to exchange data and services [Wegner 1996].
Interoperability provides two or more business entities (from the same organization or
different organizations and irrespective of their location) with the ability of
exchanging or sharing information (wherever it is and at any time) and of using
functionality of one another in a distributed and heterogeneous environment. It
preserves component systems as they are [Vernadat 2007].

 Due to the interrelation between the terms integration and interoperability, they
are often used in an indistinct way [Nardi, Falbo and Almeida 2013]. In this paper, the
term integration is adopted in a broader sense, covering both integration and
interoperability meaning.

 For a single organization, integration means that it is necessary to create a
coherent information system architecture in which the various administrative and
business processes, information stores and systems are integrated so that they appear

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

seamless from the point of view of the individual user [Vernadat 2007]. In other
words, it is necessary to define an integrated system as a collection of subsystems that
interact to form a whole and whose properties emerge due to the interaction of its sub-
systems [Pokraev 2009].

 Integration can be extended to several organizations that integrate their
applications because the emerging properties of the integrated system have value for
them. Examples of such emerging properties are more efficient usage of the available
resources, flexibility and adaptability of business processes, and increased market
reach [Pokraev 2009].

 Integration is a difficult and complex process [Themistocleous, Irani and Love
2004]. Organizations have been using an increasing number of applications to support
their processes. In general, these applications are standalone software, defined in
isolation, and operated autonomously supporting specific parts of the whole business
process [Vernadat 2007]. They are based on different standards, computing
languages, platforms and operating systems, which cause various integration
problems. There is also the complexity of existing applications, which in many cases
have fixed and rigid structures for messages, interfaces and databases. Moreover,
there is a lack of documentation, especially as legacy systems have often emerged
over the time without any strategy. Many legacy systems have existed in
organizations for more than 25 years and their technical documentation was either not
created or lost during the years [Themistocleous, Irani and Love 2004].

 In sum, applications to be integrated often have not been designed to work
together, i.e., they are heterogeneous, autonomous and distributed (HAD)
applications. “Heterogeneous” means that each enterprise application implements its
own data and process models. Heterogeneity exposes a particular difficulty relying on
multiple technical, syntactical and semantic conflicts, which require a mediation
process to deal with the differences. “Autonomous” means that applications may run
independently of any other application. Autonomy poses a particular difficulty in
interconnecting systems, requiring a solution that deals with asynchronous behavior
during flow exchanges. “Distributed” means that applications locally implement their
data model, which they generally do not share with other applications. Distribution
mainly poses difficulties on transaction control [Izza 2009].

 Integration can be performed considering different dimensions. Izza (2009)
proposed a framework synthesizing integration approaches through four main
dimensions: scope, viewpoint, layer and level. Figure 4 illustrates the integration
dimensions.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Figure 4. Integration dimensions [Izza 2009].

 Scope dimension distinguishes two main approaches: intra-enterprise and inter-
enterprise integration. Intra-enterprise integration concerns scenarios that imply
internal enterprise applications. Extra-enterprise integration aims to connect
applications from different partners [Izza 2009].

 Regarding viewpoint dimension, three main viewpoints are considered: user's
view (external), which concerns the different views from domain experts and business
users; designer's view (conceptual), which concerns the different models used during
information system design; and programmer's view (internal), which refers to
information system implementation [Izza 2009].

 Regarding layers, integration can address one or several information system
layers. Data integration deals with moving or federating data between multiple data
stores. Integration at this layer assumes bypassing the application logic and
manipulating data directly in the database, through its native interface. Message or
service integration addresses messages exchange between the integrated applications.
Any tier of an application, such as GUI, application logic or database, can originate or
consume the message. Process integration views enterprises as a set of interrelated
processes and it is responsible for handling message flows, implementing rules and
defining the overall process execution. It constitutes the most complex integration
approach [Izza 2009].

 With respect to integration levels, four main levels can be distinguished:
hardware, platform, syntactical and semantic levels. Hardware level covers
differences in computer hardware, networks, etc. Platform level encompasses
differences in operating system, database platform, etc. Syntactical level addresses the
way the data model and operation signatures are written down. Semantic level deals
with the intended meaning of the concepts in a data schema or operation signature.
Each level depends on the previous one, so it is not possible to consider semantics if
syntax is not considered yet [Izza 2009].

 Challenges in application integration arise, among others, from the fact that
heterogeneous applications employ different data and behavioral models, leading to
semantic conflicts. These conflicts occur whenever applications are built with

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

different conceptualizations, which can impact the integration of data, services and
processes [Nardi, Falbo and Almeida 2013].

3. Research Overview

We are interested in investigating initiatives involving tool integration to support
software measurement. Thus, we decided to search the literature for such initiatives
and we started by doing a tertiary review.

 A tertiary review is a study that investigates secondary studies regarding a
research topic. Secondary studies, in turn, are studies based on analyzing research
papers (referred as primary studies) [Kitchenham, Budgen and Brereton 2011].
Systematic literature reviews and mapping studies are examples of secondary studies.
We did not find any secondary study about integrating tools to support software
measurement. Hence, we decided to carry out such study. We started by performing a
mapping study in which we investigate general aspects of initiatives involving tool
integration to support software measurement [Fonseca, Barcellos and Falbo 2015].

 A mapping study provides a broad overview of a research area in order to
determine whether there is research evidence on a particular topic [Kitchenham and
Charters 2007]. Mapping studies help identifying gaps in order to suggest areas for
future research and provide a map that allows appropriately to position new research
activities. Moreover, results of a mapping study may identify suitable areas for
performing systematic reviews of the literature [Kitchenham, Budgen and Brereton
2011]. In this sense, the results obtained from the systematic mapping pointed out
aspects that should be deeper investigated. Thus, we carried out a systematic literature
review in order to investigate them.

 Systematic literature reviews (SLR) are secondary studies used to find,
critically evaluate and aggregate all relevant research papers on a specific research
question or research topic [Kitchenham, Budgen and Brereton 2011]. SLRs allow
identifying, evaluating and interpreting all available research relevant to a particular
research question, or topic area, or phenomenon of interest [Kitchenham and Charters
2007].

 All the performed studies followed the approach defined in [Kitchenham and
Charters 2007], which is composed of three main activities: planning, when the
research protocol is defined with the purpose of supporting study repeatability as well
as helping researchers to avoid bias when conducting the review; conducting, when
the protocol is executed and data are extracted, analyzed and recorded; and reporting,
when the results are recorded and made available to potential interested parties.

The following electronic databases were searched during the studies:

• IEEE Xplore (http://ieeexplore.ieee.org)
• ACM Digital Library (http://dl.acm.org)
• Springer Link (http://www.springerlink.com)
• Scopus (http://www.scopus.com),

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

• Science Direct (http://www.sciencedirect.com)
• Engineering Village (http://www.engineeringvillage.com)

 Concerning the tertiary study, the search was done using a search string
containing four groups of terms joined with the operator AND. The first group
includes terms related to integration and interoperability. The second group includes
terms related to software measurement. The third group includes terms related to tools
and applications. The fourth group includes terms related to systematic mapping and
SLRs. Within the groups, we used the OR operator to allow synonyms. The following
search string was used:

("integration" OR "interoperability" OR "interoperable" OR "integrated") AND
("software measurement" OR "software process measurement" OR "software project

measurement" OR "software engineering measurement" OR "software product
measurement") AND ("tool" OR "application" OR "system" OR "framework" OR

"suite" OR "toolkit") AND ("systematic literature review" OR "systematic review" OR
"systematic mapping" OR "mapping study" OR "systematic literature mapping")

 The search string was applied in three metadata fields (title, abstract and
keywords) and 60 publications were returned. Then, we applied the following
selection criterion: the publication addresses a systematic literature review or a
mapping study about tool integration to support software measurement. However,
none of the publications met the criterion. For instance, the publication [Mohammed
and Mohammad, 2015] was returned from Springer Link database. It presented a
systematic literature review, but it was not about tool integration to support software
measurement.

 After the tertiary study, we performed a mapping study [Fonseca, Barcellos and
Falbo 2015]. 12 initiatives involving tool integration to support software measurement
were found and their main characteristics were analyzed. The mapping study results
provided a panorama regarding the research topic, showing when and where research
in this topic has been published, the types of research done, and an overview of the
initiatives. Aspects such as types of tools, categories of measures, integration layers
and levels addressed, among others, were investigated during the mapping study.

As we argued before, a mapping study provides a broad view of a research area
and its results may point issues that can be investigated in systematic literature
reviews, since this kind of secondary study allows deeper investigation into the
identified issues [Kitchenham et al., 2011]. In this sense, after the mapping study, we
identified some issues we should investigate in deep:

(i) In the mapping, we identified the measurement activities supported by the
initiatives. Now, we should investigate how the support is provided.

(ii) In the mapping we identified categories of measures addressed by the
initiatives. Now, we should look at the measures addressed and also the
processes that were measured in the initiative.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

(iii) In the mapping we identified types of tools involved in the integration
initiative. Now, we should investigate the tools involved, the measurement
activities supported by each one of them, and how the tools support the
activities.

(iv) In the mapping, we identified the integration layers and levels addressed.
Now, we should also investigate the other integration dimensions and look
in details at how the integration is performed.

Taking these issues into account, we established new research questions and
carried out a SLR to answer them. We ran the same search string used in the mapping
study and, although the period considered was a bit longer, no new papers regarding
software measurement tool integration were found. Therefore, the selected
publications were the same, but now the initiatives found in the mapping study were
deeper analyzed during the SLR aiming to answer the new research questions. Next,
the SLR is presented in details.

4. The Systematic Literature Review

4.1. Research Protocol

In this section we present the main parts of the research protocol used to perform the
systematic literature review (SLR).

SLR goal: the goal of this SLR is to investigate initiatives involving tool integration
to support software measurement (SM).

Research Questions: For achieving the SLR goal, we defined a main research
question to be answered: What are the tool integration initiatives aiming at
supporting software measurement? With this main question in mind, we defined four
specific research questions (RQ) regarding three main aspects: Measurement, Tools
and Integration.

RQ1 (Measurement) - Which are the activities of the SM process (measurement
planning, data collection, and data analysis) supported by the integrated set of
tools and how is the support provided?: The purpose of this question is to
identify which measurement activities are supported by the initiatives in order to
evaluate the coverage of the resulting set of integrated tools, as well as to explain
how the support is provided. The activities considered are the two first activities
established in [ISO 2007] (measurement planning and measurement execution).
Measurement execution was split for allowing us to verify if the tools support
both data collection (which involves data collection itself and data storage) and
data analysis, or only one of them.

RQ2 (Measurement) - Which are the measures considered in the integration
initiative and what are the main software processes measured by them?: This
question aims at identifying which measures have been considered in the
initiatives and the main software processes measured by them, allowing us to
analyze how specific or comprehensive is the measurement scope, as well as the
main processes focused by the integration initiative.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

RQ3 (Tools) - Which are the integrated tools and to which activities of the SM
process are they related?:The rationale of this question is to identify the tools
being integrated in each initiative, and which measurement activities they
support.

RQ4 (Integration) - How is the tool integration performed and how can it be
categorized according to the scope, viewpoint, layer and level dimensions?: This
question aims to describe and categorize each integration initiative considering
the four dimensions proposed in Izza's framework [Izza 2009]: scope, viewpoint,
layer and level.

Search String: the following search string was applied to the digital libraries cited in
the previous section. As it can be noticed, the search string resulted from excluding
the fourth group of terms from the string used in the tertiary review.

("integration" OR "interoperability" OR "interoperable" OR "integrated") AND
("software measurement" OR "software process measurement" OR "software
project measurement" OR "software engineering measurement" OR "software

product measurement") AND ("tool" OR "application" OR "system" OR
"framework" OR "suite" OR "toolkit")

In order to establish the search string, we selected some relevant papers during
the informal literature review that preceded the SLR to be used as control publications,
meaning that they should be selected by the search string used in the study. Thus, we
defined and tested several different search strings until selecting the one to be used,
which was the one that provided better results in terms of relevance and number of
returned publications.

Publications Selection: selection was performed in five steps:

Step 1 – Primary selection and cataloging: the search string was applied in the
search mechanisms of the selected sources. Publication type was limited to
papers from the Computer Science and Engineering area. At the end of this
step, 948 publications were returned.

Step 2 – Duplicate removal: studies indexed by more than one digital library
were identified and the duplications were removed. 85 publications were
removed, resulting in 863 studies at the end of this step.

Step 3 – Selection of Relevant Publications –1st Filter: the title, abstract and
keywords of the selected publications were analyzed considering the following
inclusion (IC) and exclusion (EC) criteria: (IC1) the publication presents
information regarding integration among tools, applications or systems that
support software measurement; (EC1) the publication does not have an abstract;
(EC2) the publication is published as an abstract; and (EC3) the publication is
not a primary study. As a result of this step, 24 studies were selected (a
reduction of approximately 97%).

Step 4 – Selection of Relevant Publications –2nd Filter: the full text of the
publications selected in S3 was read with the purpose of identifying the ones
that provide useful information. Thereby, the inclusion criterion IC1 was
considered and also the following exclusion criteria: (EC4) the publication is

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

not written in English; (EC5) the publication full text is not available; and
(EC6) the publication is a copy or an older version of an already considered
publication. 8 studies were selected in this step.

Step 5 – Snowballing: as suggested in [Kitchenham and Charters 2007], the
references of publications selected in the study must be analyzed and, if some
of them seem to present evidence related to the research topic, it should be
assessed by the selection criteria and included in the study. Thus, in this step,
references of the publications selected in the previous step were investigated by
applying the first and second filters. As a result, 4 new publications were
selected.

Figure 5 illustrates the process followed to select publications, which resulted in 12
selected publications.

Figure 5. Publication Selection Process.

4.2. Data Synthesis

In this section we present the main results obtained considering each research
question (RQ).

Main RQ - What are the tool integration initiatives aiming at supporting software
measurement?

 Table 1 presents the twelve initiatives identified in the SLR, answering the
main research question.

Table 1. Tool Integration Initiatives that Support Software Measurement

Proposal Year Description

TAME
[Basili and

Rombach 1988]
1988

TAME (Tailoring A Measurement Environment) system is an Integrated
Software Engineering Environment composed by several integrated
components. TAME integrates three measurement tools that capture data
from Ada source and generate measures.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 1. Tool Integration Initiatives that Support Software Measurement (cont.)

Proposal Year Description

Tool Support
for SM

[Tian, Troster
and Palma

1997]

1997

This initiative uses a set of integrated tools in order to support software
measurement and quality improvement. A tool that supports tree-
modeling analysis (S-PLUS) is the central analysis tool. Other tools are
used for data gathering, analysis and result presentation. The tools are
connected to S-PLUS, either as information consumer or as information
provider.

GQM Tool
[Lavazza 2000]

2000
This proposal presents a GQM tool supporting measure definition, data
collection, analysis and feedback. It has interface with a configuration
management system and other measurement tools.

MetriFlame
[Komi-Sirvio,
Parviainen and

Ronkainen
2001]

2001

MetriFlame is a measurement automation tool based on GQM that uses
existing data recorded during software development process. It has
components for collecting and converting measurement data from
various tools, spreadsheets and databases.

DSS
[Chulaniet al.

2012]
2003

DSS is a Decision Support System developed at IBM for tracking and
using software measures, aiming to enable executives to make better
informed decisions in supporting their products. It captures (from
different host systems) data regarding customer support, critical
situations and customer satisfaction, and integrates these data into a data
warehouse.

SM in a CI
Environment

[Moreira et al.
2010]

2010

This approach uses a Continuous Integration (CI) engine in order to
automate measurement data extraction. It follows CMMI Measurement
and Analysis process area practices and GQIM concepts for selecting
relevant measures. Data collection is done by several tools.

SOFAS
[Ghezzi and
Gall 2011]

2011

SOFAS is a platform that offers software analysis services in order to
allow interoperability among analysis tools. It is made up of three main
constituents: Software Analysis Web Services, which provides a
catalogue of services for data analysis; Software Analysis Broker, acting
as the service manager and the interface between the services and the
users; and Software Analysis Ontologies, which defines and represents
the data consumed and produced by the different services.

Dione
[Caglayanet al.

2012]
2012

Dione is a Java web application whose major functions are: i) build a
measurement repository that contains product and process measures, as
well as information about defective software components; ii) analyze
trends in measures and issues using chart and report configurations; and
iii) construct and calibrate customized defect prediction models to
predict defect proneness of a software product version or release. It
collects data from several tools and uses a smart client to connect with
software development artifacts and automatically extract measures. It
also supports integration with other tools through web services.

QualitySpy
[Jureczko and
Magott 2012]

2012
QualitySpy is a framework for monitoring the software development
process. It collects raw data from several integrated tools, as well as from
the source code, and provides analysis reports.

3C
[Janus et al.

2012]
2012

3C Approach is an extension to the CI practice and addresses Continuous
Measurement and Continuous Improvement as subsequent activities to
Continuous Integration. Several Java tools and a version control system
were integrated into the CI engine Cruise Control, allowing collection of
measures related to source code and test coverage.

ASSIST
[Keser,

Iyidogan and
Ozkan 2013]

2013

ASSIST is an integrated tool developed by a CMMI level 3 organization.
It adopts GQ(I)M approach and is connected with commercial software
suites for project management, issue tracking and enterprise resource
planning (ERP).

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 1. Tool Integration Initiatives that Support Software Measurement (cont.)

Proposal Year Description

DePress
[Madeyski and

Majchrzak
2014]

2014

DePress is an open source, extensible framework for software
measurement and data integration, which can be used for prediction
purposes (e.g. defect prediction, effort prediction) and software changes
analysis (e.g., release notes, bug statistics). It supports the integrated use
(through KNIME Framework) of the issue tracking systems JIRA and
Bugzilla, the software configuration management systems Subversion
and Git, and the measurement tools Judy, JaCoCo, EclipseMetrics,
CheckStyle and PMD.

RQ1 (Measurement) - Which are the activities of the SM process (measurement
planning, data collection, and data analysis) supported by the integrated set of tools
and how is the support provided?

 Measurement planning activity is supported by four of the twelve analyzed
studies (TAME, GQM Tool, MetriFlame and ASSIST) and all of them use GQM or
GQ(I)M. TAME provides GQM templates to goal definition and refinement into
questions and measures. GQM Tool enables the edition of defined goals by means of
predefined forms and verifies the structural consistency of plans (e.g., by checking
whether each question is connected with a goal and refined into measures). ASSIST
uses GQ(I)M and includes a pool of well-structured business goals-questions-
indicators-measures that can be queried, viewed and examined. This pool allows the
reuse of the same set of sound measurement constructs in goal setting and planning
activities performed by project managers and upper level management. MetriFlame
does not present details about GQM usage, but its authors state that the tool can
manage GQM plans. In SM in a CI Environment, measurement planning is done by
using GQ(I)M, however, it is done manually before the use of the integrated tools.
Therefore, we considered that this initiative does not support measurement planning.

 Unlikely measurement planning, data collection activity is supported in all
studies. All initiatives support data collection by integrating tools that act as data input
tools. Tool Support for SM, GQM Tool, MetriFlame, DSS, SM in a CI
Environment, SOFAS, QualitySpy and 3C obtain measurement data only from
external tools. TAME, Dione and ASSIST also provide a mechanism for data input as
a result of the integrated measurement support.

 Data analysis is also supported in all studies. The initiatives present analysis
features varying from simple reports to sophisticated analysis tools. TAME,
MetriFlame, QualitySpy, 3C and DePress present simple report tools, i.e., they
include a module or a tool that generates limited and fixed graphs or reports for
viewing measurement results. Tool Support for SM, GQM Tool, DSS, SM in a CI
environment, SOFAS, Dione and ASSIST, in turn, present at least one sophisticated
analysis tool, providing flexible and dynamic views, graphs and reports about the
collected measurement data.

RQ2 (Measurement) - Which are the measures considered in the integration
initiative, and what are the main software processes measured by them?

 Table 2 enumerates the measures addressed in each proposal, and the main
processes measured. Some proposals focus on a single process. Others focus on more

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

than one process. There are also initiatives in which the measured processes are not
previously defined, and depend on data available from the integrated tools.

 Most of the measures addressed by the initiatives are related to code. As a
consequence, Coding is the software process focused by most of the proposals. Some
of them address only measures related to code (e.g., SOFAS). Others have also
measures related to other processes (e.g., TAME and SM in a CI Environment also
has measures related to Testing), but the main measured process is Coding.

 Some proposals split their focus between Coding and another process: ASSIST
measures mainly Project Management and Coding, DePress focus on Coding and
Configuration Management, and 3C focus on Coding and Testing.

 MetriFlame addresses measures related to the software development process,
however the authors do not specify which are the measures, since they depend on data
available from the integrated tools. Consequently, it is not possible to identify which
processes related to software development (e.g., Coding, Design) are measured,
because this depends on the addressed measures. ASSIST also allows defining
measures according to available data. In this sense, depending on the application
context, it could measure other processes than the ones cited in Table 2.

Table 2. Measures and Main Measured Software Processes

Proposal Measures
Main Software

Processes

TAME
Lines of code, structural complexity measures, data binding
measures, test coverage.

Coding

Tool
Support for

SM

Number of defect fixes, code complexity, internal measures,
predictive modeling linking code measures, failure arrivals,
execution time, time of failure instances, number of test runs,
number of processed transactions, estimated reliability (number of
successes over the number of test runs), predicted success rate,
measures related to design, size, changes, defects, tests, transactions.

Coding

GQM Tool

Total number of failures; for each failure: priority, type, detection
time, conclusion time; Total number of faults; for each fault:
severity, type, phase when originated, detection time, correction
time; cyclomatic number; number of classes; methods per class;
LOC; lines of comments; size; average complexity and size by
component

Coding

MetriFlame
It depends on the data available in the integrated tools, databases and
spreadsheets.

It depends on the
available data.

DSS

Nature of a problem, Severity, Problem resolution provided,
Capability, Ease of use, Performance, Reliability, Ease of
installation, Maintainability, Documentation, Service/Support,
Overall Satisfaction.

Customer
Management

SM in a CI
Environment

Number of Lines of Code, Number of instructions, Number of
methods, Number of fields, Code Source Cyclomatic Complexity, IL
Cyclomatic Complexity, Type rank, Lack of cohesion of methods,
Number of children, Depth of inheritance tree, Number of lines of
comment, Percentage comment, Afferent coupling at type level,
Efferent coupling at type level, Association between class,
Percentage coverage (unit tests).

Coding

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 2. Measures and Main Measured Software Processes (cont.)

Proposal Measures
Main Software

Processes

SOFAS

Fan-In and Fan-Out of classes, methods and packages; McCabe’s
cyclomatic complexity of classes, methods and packages; LOC of
classes, methods and packages; Number of calls in the entire system;
Height of inheritance tree of classes; Average hierarchy height;
Average number of derived; Number of direct sub-classes of a
classes; Number of methods overriding a method in any one of the
super-classes of a class; Number of classes; Number of packages;
Number of attributes (static and non) of classes and packages;
Number of methods (static and non) of classes and Packages;
Number of parameters of a method.

Coding

Dione
Cyclomatic complexity per month, LOC size of the project over
time, Defect count and defect density per month, Average cyclomatic
complexity per month.

Coding

QualitySpy 19 code-related measures calculated by CKJM extended tool. Coding

3C

Number of tests, Test coverage, Test-Growth-Ratio, Number of
broken builds, Total lines, Effective lines, Checkstyle violations,
Findbugs priority 1/2/3 rule violations, PMD priority 1/2/3 rule
violations.

Coding and
Testing

ASSIST

Measures related to project (e.g., estimates and actual values), to
product (e.g., Functional size, Code length, Technical properties), to
development process (e.g., development team measures) and other
measures defined during GQIM, according to the available data.

Project
Management and

Coding

DePress

Number of issues, Number of unique issues for each file, Defects
post-release, CK Java Metrics, Code coverage, Time spent on
assigned tasks.

Configuration
Management and

Coding

 The addressed measures are used with several purposes. Many of them are used
to support software process improvement. This occurs in TAME, GQM Tool, SM in a
CI Environment, QualitySpy and ASSIST. In Tool Support for SM, measures enable
software quality assessment based on reliability growth models. In DSS, measures
related to customer are used to provide a customer view of the provided services to
business executives responsible for multiple software products. SOFAS applies
measures to analyze services quality. In Dione and DePress, measures are used to
support software defect prediction. In 3C, measures support quality assurance of
software products developed by using agile methods. Finally, MetriFlame uses
measures to evaluate software development processes and products.

RQ3 (Tools) - Which are the integrated tools, and to which activities of the SM
process are they related?

 Table 3 presents the tools involved in each initiative and the corresponding
measurement activity supported. After Table 3, the measurement support provided by
the tools in each proposal is described.

Table 3. Measurement Tools and Software Measurement Activities Supported

Proposal
Measurement Tools and Software Measurement Activities Supported

Measurement
Planning

Data Collection Data Analysis

TAME TAME
TAME, coverage tool, data bindings tool,
code measurement tool

TAME

Tool Support
for SM

-
IDSS, CMVC, TestLog, SlaveDriver,
REFINE, W-Analyzer

S-PLUS, SMERFS,
SAS, TreeBrowser

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 3. Measurement Tools and Software Measurement Activities Supported (cont.)

Proposal
Measurement Tools and Software Measurement Activities Supported

Measurement
Planning

Data Collection Data Analysis

GQM Tool GQM tool
GQM tool, Oracle, PCMS, Krakatau,
Resource Standard Metrics

GQM tool, MS
Access

MetriFlame MetriFlame

MetriFlame, Lotus Notes, Paradox,
dBASE, IBM DB/2, Informix, Interbase,
MS Access, MS SQL Server, Oracle,
Sybase, FoxPro, Microsoft Project,
Microsoft Excel

MetriFlame

DSS - Legacy tools
Decision Support

System

SM in a CI
Environment

-
Cruise Control.Net, Nant, NUnit,
PartCover, NDepend, MS Access

MS Excel, MS SQL
Server Analysis

Services

SOFAS -
SOFAS, CVS, Subversion, Git, Bugzilla,
Google Code, Trac, SourceForge

SOFAS

Dione -
Dione, CVS, Subversion, Git, Mercurial,
Clearcase, Bugzilla, Jira

Dione

QualitySpy -
QualitySpy, CKJM extended, Selenium,
Jira, Subversion, Hudson

QualitySpy

3C -
Subversion, Findbugs, Checkstyle, PMD,
Cobertura, Cruise Control, JUnit

Cockpit

ASSIST ASSIST
ASSIST, ERP system, Issue Tracking tool,
Project Management tool

ASSIST

DePress

-
Jira, Bugzilla, Subversion, GIT, Judy,
JaCoCo, EclipseMetrics, CheckStyle,
PMD, DePress

DePress, KNIME
Report Designer

TAME: In this initiative, TAME is the main tool and supports the three measurement
activities. TAME’s architecture is made up of several components. GQM Model
Selection and GQM Model Generation components support measurement planning by
allowing the creation or reuse of GQM models. Measurement Scheduling,
Measurement Tools and Data Entry and Validation components support data
collection. They allow, respectively, scheduling automatic data collection, collecting
process and product data automatically from three tools (coverage tool, data binding
tool and code measurement tool), and entering data manually. GQM Analysis and
Feedback and Report Generator components support data analysis. The first one
allows analysis according to a specific GQM model and the second offers a variety of
reports.

Tool Support for SM: This proposal does not support measurement planning. It uses
IBM tools (IDSS - Integrated Development Support System and CMVC -
Configuration Management/Version Control), and home-grown applications (TestLog
and SlaveDriver) to support data collection from projects databases. REFINE, a
reverse engineering toolkit, is used to calculate design and code complexity measures
from source code and a tool called W-Analyzer computes product measures. Data
analysis is supported by four tools: S-PLUS, a tree-modeling analysis tool that acts as
a central analysis tool; SMERFS, which is used when additional analysis models are
necessary; SAS, a commercial statistical package that is used for general statistical

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

modeling; and TreeBrowser, an internal tool that facilitates analysis tree exploration.

GQM Tool: The GQM tool supports measurement planning by allowing creating
GQM plans. To aid data collection, PCMS, Krakatau and Resource Standard Metrics
tools act as data providers, and MS Access and Oracle are used to store data. Data
analysis is supported by the GQM tool, which borrows the computational power from
the MS Access query system to run queries associated with GQM plan items and
display the results.

MetriFlame: This proposal has the MetriFlame tool as the central tool. It supports
GQM plans creation (measurement planning), and collects measurement data from
various sources (data collection): Lotus Notes, Paradox, dBASE, IBM DB/2,
Informix, Interbase, MS Access, MS SQL Server, Oracle, Sybase, FoxPro, MS
Project and MS Excel. MetriFlame tool allows data analysis, supports data
representation and results visualization, identifies trends and compares previous and
latest results.

DSS: The Decision Support System consists of a data warehouse, an OLAP analytical
engine and a web front-end. Data collection is made from three legacy system data
sources (customer support, critical situations and customer satisfaction) that are
integrated into the data warehouse. To support data analysis, the analytical engine
analyzes data from the data warehouse, and the results are presented by the web front-
end.

SM in a CI Environment: Several tools are used to support data collection: PartCover
is used to provide test code coverage data, NDepend concerns software metrics,
Cruise Control.Net acts as a CI engine connecting the other tools; Nant automates
build tasks and provides build information; NUnit runs unit tests and report test
results. To support data analysis, a data warehouse was created, and an ETL process
consolidates data in a data warehouse cube, allowing OLAP operations.

SOFAS: SOFAS architecture is made up of three main constituents: Software
Analysis Web Services (SA-WS), Software Analysis Broker (SA-B), and Software
Analysis Ontologies (SA-Ontos). Both data collection and data analysis are supported
by SA-WS, which collects data through services from CVS, Subversion, Git,
Bugzilla, Google Code, Trac and SourceForge. To support data analysis, SA-B
provides a services composer that allows data to flow between services, generating
combined analysis results.

Dione: For supporting data collection, Dione uses a smart client technology to
connect to version control systems (CVS, Subversion, Git, Mercurial, Clearcase) and
bug repositories (Bugzilla, Jira). The smart clients automatically extract product and
in-process measures data. Data analysis is supported by a web-based reporting
module, which allows customized reports according to different stakeholders.

QualitySpy: QualitySpy has two main groups of features. The first group concerns
data acquisition and supports data collection. This group is based on several
connectors to collect data from Java classes, Subversion, Jira and Hudson. Measures
from Java classes are calculated by a connector that wraps the CKJM extended tool.
Measures from Jira are collected through the user interface using Selenium. Data

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

analysis is supported by the second group of features (reporting), which is operated
through a web browser and provides reports that can be predefined or customized by
the user.

3C: For data collection, Cruise Control is used to extract data from several tools:
Subversion, for data related to source code; Findbugs for programming bugs;
Checkstyle, for violations of coding standards; PMD, as a hybrid-version of the tools
mentioned before; Cobertura, for test coverage; JUnit, for unit tests; and the Cruise
Control itself for data regarding builds. A tool called Cockpit was developed to
support data analysis. Measurement results are put into graphs that show the changes
of measures over time.

ASSIST: ASSIST is composed of several modules. Measurement activities are mainly
supported by the Measurement module, which comprises three sub-modules: Metrics,
Services and Projects. Measurement planning is supported by the Metrics sub-module,
which provides functionalities for defining business goals, questions, indicators and
measures, and establishing relationships between them. Measurement planning is also
supported by the Projects sub-module, which is used to create project measurement
plans. Data collection, in turn, is aided by the Services sub-module, which has manual
and automated data collection services to populate a measurement database.
Automatic data collection features extracts data from project management, issue
tracking and ERP commercial software suites. Data analysis is supported by the
Metrics sub-module that allows creating/customizing reports for selected indicators
and constructing pivot tables that supplement the indicators. The analysis results
(graphical/tabular representations and interpretations or comments made by the user)
are stored. Although the main module supporting the measurement process is
Measurement, the Project Management module also aids measurement activities. It
provides an infrastructure for project data collection, storage and use for project
estimation.

DePress: DePress uses an open source framework called KNIME to support data
collection and analysis. Data collection is aided by an extension set of KNIME
plugins that retrieve data from software configuration management systems
(Subversion and Git), issue tracking tools (Jira and Bugzilla) and metric readers
(Judy, JaCoCo, EclipseMetrics, CheckStyle and PMD). Data can also be manually
inputted. DePress supports data analysis with the help of KNIME Report Designer,
which is based on a BIRT tool (Business Intelligence Reporting Tool).

RQ4 (Integration) - How is the tools integration performed and how can it be
categorized according to the scope, viewpoint, layer and level dimensions?

 Table 4 summarizes the integration approach adopted in each proposal. Next,
we classify the initiatives according to the framework proposed by Izza [Izza 2009]. It
is worth saying that some publications describe the integration approach in more
details than others. Hence, information regarding the integration approaches is
heterogeneous and limited to the publication content.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 4. Tools Integration Overview

Proposal Description

TAME
Integration in TAME occurs in the Measurement Tools component. This component
is integrated to three measurement tools that collect data from Ada source code and
make them available for TAME in a relational database.

Tool Support
for SM

The integration approach is based on adopting external rules for data contents and
formats (on which all the parties involved have to agree on), using common tools for
multiple purposes, and utility programs to convert data for interoperability of tools.
There is a central analysis tool (S-PLUS) and the other integrated tools (internal and
commercial off-the-shelf tools) support data capturing, analysis and result
presentation. Defect data are stored in databases, test data in reports, and data related
to source code measures are dynamically calculated. Utility programs are used to
extract raw data from the data sources and convert them into a format suitable for
analysis.

GQM Tool

In this initiative, integration between the main tool (GQM Tool) and the
configuration management system (PCMS) is made through links created between
the databases of the tools. Once links are established, data created by and stored in
PCMS’s database are automatically made available in GQM Tool’s database. For
integrating metric reader tools (Krakatau and Resource Standard Metrics) to GQM
Tool, another strategy is used because the metric readers record measurement data in
HTML files. A DTD (Document Type Definition) was defined and a translator to
turn the native data format into XML was developed to each metric reader tool.
GQM Tool was equipped with a parser that reads XML files and stores data into
GQM Tool’s database.

MetriFlame

MetriFlame integrates data from various data sources, such as version control
systems and project management tools, with the help of a scheduler. The scheduler
provides a set of tasks (e.g., retrieve data from external raw data sources, calculate
metrics) to be chosen by the user and scheduled according to established conditions.
When conditions are fulfilled, the scheduler activates MetriFlame to perform the
scheduled tasks.

DSS

In DSS, data stored in three legacy data sources are integrated into a central data
warehouse that is further used for a web front-end to analyze and display quality
information about service and customer satisfaction. Details about how data is
loaded into the data warehouse are not discussed in the publication.

SM in a CI
Environment

In this proposal, the integration is done with the assistance of the CI engine Cruise
Control.Net. It extracts data from other tools and consolidates them in XML files. A
developed program extracts measures from the XML files, and stores them into a
relational database. An ETL process consolidates data in the relational database into
a data warehouse cube, enabling OLAP analysis over the cube.

SOFAS

In SOFAS there is a set of web services for software analysis that provide different
kinds of analysis from data recorded in several tools. The integration approach is
based on service workflows. Users can select services to compose workflows, and
SOFAS turns the workflows into executable processes and runs them. The
composition of services allows data to flow between services and generates a
combined analysis result.

Dione

Dione integrates data by using smart clients that are small Java programs able to be
executed directly from the Dione web interface. They gather measures from software
artifacts (e.g., source code repositories and issue management systems), and send
them to Dione's server. Integration with software quality applications is also
supported through web services.

QualitySpy

QualitySpy uses four connectors to collect data from different sources. Three of
them are used to collect raw data (data stored in a textual form without
transformation) and one to calculate software measures from Java classes. Collected
data are stored in a central repository and are made available to further investigation.
The user can define measures on top of the raw data using a reporting module
interface implemented as a light web client that communicates with the server using
Representational State Transfer (REST) architecture.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 4. Tools Integration Overview (cont.)

Proposal Description

QualitySpy

QualitySpy uses four connectors to collect data from different sources. Three of
them are used to collect raw data (data stored in a textual form without
transformation) and one to calculate software measures from Java classes. Collected
data are stored in a central repository and are made available to further investigation.
The user can define measures on top of the raw data using a reporting module
interface implemented as a light web client that communicates with the server using
Representational State Transfer (REST) architecture.

3C

In this proposal, the CI engine Cruise Control is responsible for the integration. It
activates the measurement tools to collect test data (from JUnit and Cobertura) and
source code data (from Findbugs, Checkstyle and PMD). Then, measurement results
are put into graphs (Cockpit).

ASSIST

ASSIST is integrated with commercial project management, issue tracking and ERP
software suites, which all rely on relational database. An integration strategy based
on SQL (Structured Query Language) is used in order to spare code
development/modification at commercial tools side. An SQL-like syntax and
interpreter was developed so that complex and parameterized expressions can be
written and users can define measurement constructs, queries, reports and data
collection services via user interfaces.

DePress

DePress integrates with other tools through KNIME plugins structure. For each new
tool to be integrated, a new plugin has to be implemented. To collect data, plugins
can work in two modes: online and offline. Online mode means direct access to data
through the API provided by the tools. Offline mode means that data is exported by
tools and imported into DePress. DePress uses tabular format to exchange data. The
plugins check only whether incoming data consists of the required columns or not.

Scope: Table 5 presents the study classification from the scope dimension perspective.
The column Intra refers to proposals presenting an intra-enterprise scope, where only
one organization is involved into the integration approach. Extra column refers to
proposals involving more than one organization into the integration approach,
presenting an extra-enterprise scope. Undefined column refers to proposals which it
was not possible to identify whether only one or more organizations were involved in
the integration initiative. 8 proposals are classified as intra-integration scope (TAME,
Tool Support for SM, GQM Tool, MetriFlame, DSS, SM in a CI Environment, 3C,
ASSIST)and 4 proposals are classified as undefined (SOFAS, Dione, QualitySpy,
DePress).

Table 5. Integration Classification According to Scope Dimension

Proposal Intra Extra Undefined
TAME X

Tool Support for SM X
GQM Tool X
MetriFlame X

DSS X
SM in CI Environment X

SOFAS X

Dione X

QualitySpy X

3C X

ASSIST X

DePress X

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Viewpoint: The three views of this dimension are covered by all proposals.
Programmer’s view is covered by all proposals, since this view refers to the
implementation of systems, and all initiatives are functional. Designer’s view is
addressed by all initiatives because it concerns design models representing the
integration, and all initiatives have at least one design model describing the
integration. In general, the design models are architectural models or conceptual
models. Details about the models presented in each study are shown in Table 6.
User’s view refers to the integration from the users’ perspective. All proposals
provide features from the integration to the users.

Table 6. Integration Classification According to Designer's View (Viewpoint Dimension)

Proposal Model Type Model presented in the Publication

TAME Architectural Architectural design of the TAME system.

Tool Support for
SM

Conceptual
An abstract model represents the information flow and
connections among the integrated tools.

GQM Tool Conceptual
Database schemas and a model addressing the integration
of GQM tool with software configuration management and
metrics tools.

MetriFlame Conceptual
Models represent the integration environment and the
scheduler.

DSS Architectural Design and architecture models of the integrated system.

SM in CI
Environment

Conceptual Data warehouse schema represents the integration scenario.

SOFAS Architectural SOFAS architecture model.

Dione Architectural Dione architecture model.

QualitySpy Architectural A model represents the QualitySpy high level architecture.

3C Conceptual A model addresses the message flow between tools.

ASSIST Conceptual
A model represents the module responsible for data
collection.

DePress Conceptual
Models illustrate DePress integration with other tools and
plugin workflow.

Layer: The classification regarding integration layer dimension is presented in Table 7.
Process layer is not addressed, 7 proposals address only data layer (GQM Tool,
MetriFlame, DSS, SM in a CI Environment, QualitySpy, ASSIST, DePress) and 4
proposals address only message layer (TAME, SOFAS, Dione, 3C). Tool Support for
SM addresses both data and message layer. In this proposal, data is directly accessed in
its source (data layer) and messages guide the information flow (message layer) from
data capturing to analysis and presentation tools.

Level: Except for SOFAS, the higher level addressed by all proposals is the syntactical
level. This level encompasses the way the data model and operation signatures are
written down [Izza 2009]. Proposals classified in this level concern essentially in
capturing data regardless the semantic of these data or of the services involved. SOFAS
is the only proposal addressing the semantic level. It uses OWL ontologies to assign a
clear semantic to data consumed and produced by the services.

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Table 7. Integration Classification According to Layer Dimension

Proposal Data Message Process

TAME X

Tool Support for SM X X

GQM Tool X

MetriFlame X

DSS X

SM in CI Environment X

SOFAS X

Dione X

QualitySpy X

3C X

ASSIST X

DePress X

4.3. Discussion

This section provides some discussion about the data presented in the previous
section.

 Regarding measurement activities, measurement planning was supported by
four studies while data collection and data analysis were supported by all of them. A
possible explanation is that measurement planning is highly dependent on human
judgment and not prone to automation [Komi-Sirvio, Parviainen and Ronkainen
2001].

 We noticed that all proposals that support measurement planning activity
(TAME, GQM Tool, MetriFlame, ASSIST) are based on GQM paradigm [Basili,
Rombach and Caldiera 2004] or one of its variations. Since GQM has been
successfully adopted in software measurement initiatives for years, its usage by the
proposals that address measurement planning was expected.

 Regarding data collection, data is collected in different ways in the proposals.
There are smart client technologies (Dione), direct database access (GQM Tool,
ASSIST), CI engines (SM in CI Environment, 3C), web services calls (SOFAS),
plugins (DePress) and schedulers (MetriFlame). All proposals are focused in
automated data collection. Proposals TAME, Dione and ASSIST also allow manual
data input. Proposal MetriFlame argues that measurement process should be
automated whenever possible and reasonable, turning data definition, collection,
calculation and analysis easy and effortless as possible. In this way, the automation of
measurement enhances visibility and leads to a greater awareness of the reasoning
behind collecting measurement data and using it whiting organizations [Komi-Sirvio,
Parviainen and Ronkainen 2001]. However, automating measurement process does
not mean suppressing manual data collection. Therefore, we believe that a hybrid

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

approach (i.e., automated and manual) is preferred because it eases organizations to
switch from a previous measurement process that is essentially based on manual data
collection to an automated measurement process. It also allows the collection of
measurement data that are not yet available in tools or are not prone to automated
collection.

 For data analysis, some studies focus on a specific perspective such as analysis
of software reliability (Tool Support for SM), customer satisfaction (DSS) and defect
prediction (Dione, DePress). However, most studies (TAME, GQM Tool,
MetriFlame, SM in CI Environment, Dione, 3C) adopt a more general perspective,
allowing to analyze whether the established goals have been achieved. It can be
highlighted that all proposals addressing measurement planning adopt this general
perspective, since they adopt GQM (a goal oriented paradigm).

 Analyzing the integrated tools, there are proposals integrating commercial tools
(e.g., Tool Support for SM, MetriFlame, ASSIST), open source tools (e.g., SM in a CI
Environment, SOFAS, QualitySpy, 3C, DePress) and in-house developed tools (e.g.,
TAME, GQM Tool, ASSIST). Some proposals focus on integrating tools aiming to
promote a more complete environment (with new measurement supporting features)
in which external tools are used essentially to data collection (e.g., TAME, ASSIST).
Others integrate tools without adding new functionalities, i.e., the initiative is
basically the integration of existing (or developed) tools (e.g., Tool Support for SM,
SM in a CI Environment, SOFAS, QualitySpy, 3C). 8 of 12 (75%) proposals adopt
this last approach, including all initiatives that support measurement planning. We
also noticed that in some initiatives (Tool Support for SM, GQM Tool, MetriFlame,
SM in a CI Environment, SOFAS, ASSIST, DePress) supporting the measurement
process was the main motivation for integrating the tools, while in others (TAME,
DSS, Dione, QualitySpy, 3C) the measurement support was achieved as a
consequence of the tool integration. For instance, in QualitySpy, tools are integrated
to support monitoring the software development process and, as a consequence of the
integration, software measurement was also supported.

 There are a variety of tools that can be used to support measurement. This
increases the relevance of integration in this domain, because organizations can
choose the tools that are more suitable for their needs and work on their integration.
Although there is diversity in tools being integrated, a predominance of code-related
tools detaches. Several code measurement tools, issue tracking tools, and
configuration management systems are integrated in the analyzed proposals. It might
be a consequence of the fact that these types of tools are prone to automatic collection
of measures. Nevertheless, some of them depend on others to provide information.
For instance, since source code is usually stored in a configuration management
system, the presence of a code measurement tool usually implies the presence of a
configuration management system.

 Considering that code-related tools were integrated in most proposals, it was
expected that code measures (e.g., cyclomatic complexity, number of methods) would
be addressed by most proposals. 10 of the 12 studies address them. Taking the types
of integrated tools and measures into account, except MetriFlame and ASSIST, which
have a more comprehensive scope, the integration initiatives usually address a

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

specific measurement scope (e.g., coding, customer support).

 As a consequence of code-related tools predominance, Coding was the main
measured process. Although other processes such as testing, configuration
management and project management were also measured, coding was the process on
which most of studies focused.

 Analyzing the classification scheme according to Izza’s framework [Izza 2009],
some points can be highlighted. First, almost all studies have an intra-enterprise
scope. Second, regarding the integration viewpoints, all of them were addressed by all
the proposals, but in different ways. For programmer’s view, every integration
initiative is functional and it was implemented in an ad-hoc way, as described in RQ3.

 Designer’s view is covered, in general, by presenting either architectural or
conceptual models. User’s view is addressed by features available to the users due to
the integration. Third, all proposals are classified in syntactical level, except one
(SOFAS) that addresses the semantic level. Neglecting semantics during an
integration initiative is a serious issue, since many semantic problems can occur, such
as the ones called “false agreement”, which are described in [Pokraev 2009] and
include: the use of equivalent terms with different meaning; the use of equivalent
terms with partially equivalent meaning; the use of different terms with equivalent
meaning; and the use of different terms with a certain degree of equivalence.
Ontologies can be used for addressing these problems, since they have been
acknowledged as an important means for achieving semantic integration by providing
formal specifications of shared conceptualizations [Nardi, Falbo and Almeida 2013].
Last, integration layer classification is diverse. 7 proposals address the data layer, 4
the message layer and 1 both the layers. Process layer is not addressed. We believe
this is due to the fact that process layer integration (also referred as Business Process
Integration) constitutes the most complex integration approach [Izza 2009]. It views
an enterprise/organization as a set of interrelated business processes and not merely
islands of information. Process integration deals with message flows, rules and
process execution. Message layer is addressed, but only by few proposals. Message
layer integration requires tool communication by means of message exchange
between the tools. Tools providing service API (application programming interface)
encourage message layer integration. However, if the integrated tools are not able to
communicate by means of messages, integration in this layer demands extra effort,
especially if tools were not developed by the group performing the integration (this is
the case in most proposals). One alternative is to develop wrappers to expose tool
features into services, allowing integration in this layer.

5. Related Work

Since secondary studies addressing tool integration to support SM were not found
during the tertiary review, we searched for secondary studies analyzing tool
integration without delimiting the domain. We found one study and, in this section,
we compare some of its findings with the ones obtained in our SLR.

 Nardi et al. (2013) conducted a secondary study investigating semantic
integration initiatives and the use of ontologies in this context. The authors also

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

classified the identified integration initiatives according to Izza’s framework [Izza
2009] layer dimension. When considering the layers in isolation or in tandem with
other layers, 30% of the analyzed studies addresses the data layer, 75% addressed the
message layer, and 42% addresses the process layer. In the SLR presented in this
paper, when considering layers in isolation or in tandem with other layers, data layer
is addressed by 66% of the studies, message layer by 42%, and process layer is not
addressed. It is possible to notice that message layer is more addressed than data layer
in [Nardi, Falbo and Almeida 2013] while the opposite occurs in the review discussed
in this paper. We can speculate that one of the reasons of this difference is the fact
that in [Nardi, Falbo and Almeida 2013] authors consider only tools integration
initiatives that take semantic aspects into account. Since these initiatives cover more
levels than most of the studies selected in our SLR, we can suppose that they are more
complete and, as a consequence, prone to cover superior layers.

 Nardi et al. (2013) explain that the role that functionalities (represented by the
message layer) play in order to promote the link between data sources and business
processes in addition to the increasing interest in service-oriented architectures (SOA)
in the past decade justifies message layer being more addressed than data layer in
their study. Analyzing the studies selected in our review, we noticed that, despite the
consolidation of SOA, none of the studies have adopted a SOA approach.

6. Final Considerations

This paper presented a systematic literature review in which we analyzed twelve
proposals involving tool integration for supporting software measurement. The review
was motivated by issues we identified in a systematic mapping that preceded the
review [Fonseca, Barcellos and Falbo 2015]. In the systematic literature review we
investigated in deep some aspects related to measurement (addressed measures and
supported measurement activities), tools (involved tools and provided support), and
integration dimensions (according to Izza’s framework [Izza 2009]).

 Summarizing, the analyzed proposals address measurement execution (data
collection and analysis), but most of them do not address measurement planning.
Most proposals address code-related measures and focus on the Coding process.
Coverage of integration scope, viewpoint and level dimensions is very similar among
the proposals (most of them are intra-enterprise, cover all views and consider only
syntactical aspects). Regarding the layer dimension, data integration is most common,
although some proposals deal with integration in the message layer. Finally, only one
proposal considers semantic aspects.

 The results of the systematic review point out to some important issues in the
context of tool integration to support measurement: (i) there is a limited support to
measurement planning; (ii) the scope of measurement is not comprehensive (limited
mainly to code-related measures and Coding process); (iii) semantics has not been a
concern; (iv) service-oriented architectures have not been explored, resulting in
limited integration in the message layer; (v) a holist view of the (software) process has
not been considered, leading to the absence of integration in the process layer.

 These issues reveal research opportunities. Tools integration initiatives in

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

software measurement domain should provide more general solutions, covering other
measures than code-related measures and measuring other processes. Also, it is
necessary to consider a holistic view of the measurement process and provide better
support for measurement planning.

 The integration between the measurement process and the measured processes
(e.g., project management and quality assurance processes) should be addressed by
performing integration at the process layer.

 SOA is well recognized and widespread in nowadays. Thus, measurement
related tools integration initiatives should consider this kind of architecture in order to
enable integration in message layer, even when integrating legacy tools (i.e., not
service-oriented tools).

 Last but not least, it is necessary to consider semantic aspects when integrating
tools to support software measurement. The vocabulary regarding software
measurement is diverse. Although there are several standards devoted to address
software measurement (e.g., [IEEE 1998], [ISO 2007], [McGarry et al. 2012]) the
vocabulary used by them is not the same. Many times, the same concept is designated
by different terms in different proposals. Others, the same term refers to different
concepts. As a consequence, the vocabulary adopted by software organizations tends
to also be diverse. To deal with these problems, it is important to establish a common
conceptualization regarding the software measurement domain [Barcellos, Falbo and
Rocha 2010]. Ontologies can be used for that purpose and can be used as a basis for
integrating measurement tools, since they provide formal specifications of shared
conceptualizations and have been acknowledged as an important means for achieving
semantic integration [Nardi, Falbo and Almeida 2013].

 In this sense, we consider that the road ahead in the area must focus on
ontology-based approaches to guide tool integration initiatives, considering semantic
aspects and covering both message and process layers.

7. References

Barcellos, M. P., Falbo, R. A., Rocha, A. R. (2010). Establishing a well-founded
conceptualization about software measurement in high maturity levels. In Proc. of
the 7th International Conference on the Quality of Information and
Communications Technology, p. 467–472.

Barcellos, M. P., Falbo, R. A., Rocha, A. R. (2013). A Strategy for Preparing
Software Organizations for Statistical Process Control. Journal of the Brazilian
Computer Society 2013 (19), p. 445–473.

Basili, V. R. and Rombach, H.D. (1988). The TAME project: towards improvement-
oriented software environments. IEEE Trans. Softw. Eng., v. 14, n. 6, p. 758–773.

Basili, V. R., Rombach, H.D., Caldiera, G. (2004). Goal Question Metric paradigm.
Encyclopedia of Software Engineering, 2 Volume Set, John Wiley & Sons, Inc.

Caglayan, B., Misirli, A. T., Calikli, G., Bener, A., Aytac, T. and Turhan B. (2012).
Dione: an integrated measurement and defect prediction solution. In Proc. of the

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

ACM SIGSOFT 20th International Symposium on the Foundations of Software
Engineering - FSE ’12, p. 1–4.

Chulani, S., Ray, B., Santhanam, P. and Leszkowicz, R. (2013). Metrics for
managing customer view of software quality. In Proc. of the 5th International
Workshop on Enterprise Networking and Computing in Healthcare Industry (IEEE
Cat. No.03EX717), p. 189–198.

Fenton, N. E. and Neil, M. (2000). Software Metrics: a Roadmap. In Proc. of the 22nd
International Conference on Software Engineering, San Francisco Bay, p. 359-
370.

Fenton, N. E. and Pfleeger, S. L. (1997). Software Metrics: A Rigorous and Pratical
Approach, PWS Publishing Company.

Florac, W. A. and Carleton, A. D. (1999). Measuring the software process: statistical
process control for software process improvement. Addison Wesley, Boston, USA.

Fonseca, V. S., Barcellos, M. P. and Falbo, R. A. (2015). Integration of Software
Measurement Supporting Tools: A Mapping Study. In Twenty-Seventh
International Conference on Software Engineering and Knowledge Engineering
(SEKE 2015), p. 516–521.

Ghezzi, G. and Gall H. C. (2011). SOFAS: A Lightweight Architecture for Software
Analysis as a Service. In Proc. of the Ninth Working IEEE/IFIP Conference on
Software Architecture, p. 93–102.

IEEE Std 1061. (1998). IEEE Standard for a Software Quality Metrics Methodology.

ISO/IEC 15939. (2007). Systems and Software Engineering – Measurement Process.

Izza S. (2009). Integration of industrial information systems: from syntactic to
semantic integration approaches. Enterp. Inf. Syst., v. 3, n. 1, p. 1–57.

Janus, A., Dumke, R., Schmietendorf, A. and Jager, J. (2012). The 3C approach for
agile quality assurance. In Proc. of the 3rd International Workshop on Emerging
Trends in Software Metrics (WETSoM), p. 9–13.

Jureczko, M. and Magott, J. (2012). QualitySpy: a framework for monitoring software
development processes. In Journal of Theoretical and Applied Computer Science,
v. 6, n. 1, p. 35–45.

Keser, B., Iyidogan, T. and Ozkan, B. (2013). ASSIST: an integrated measurement
tool. In Proc. of the Joint Conference of the 23rd International Workshop on
Software Measurement and the 8th International Conference on Software Process
and Product Measurement, p. 237–242.

Kitchenham, B. A., Budgen, D. and Brereton, O. P. (2011). Using mapping studies as
the basis for further research: a participant-observer case study. Journal of
Information and Software Technology, v. 53, p. 638-651.

Kitchenham B. A. and Charters S. (2007). Guidelines for performing systematic
literature reviews in software engineering. TR EBSE-2007-01. School of
Computer Science and Mathematics, Keele University,

FONSECA, V. S.; BARCELLOS, M. P.; FALBO, R. A.;
Tools Integration for Supporting Software Measureme nt: A Systematic Literature Review
iSys – Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 8, No. 4, pp. 80-108, 2015

Komi-Sirvio, S., Parviainen, P. and Ronkainen, J. (2001). Measurement automation:
methodological background and practical solutions a multiple case study. In Proc.
of the 7th International Software Metrics Symposium, p. 306–316.

Lavazza, L. (2000). Providing automated support for the GQM measurement process.
IEEE Softw., v. 17, n. 3, p. 56–62.

Madeyski, L. and Majchrzak, M. (2014). Software measurement and defect prediction
with DePress extensible framework. Foundations of Computing and Decision
Sciences, v. 39, n. 4, p. 249–270.

McGarry, J., Card, D., Jones, C., Layman, B., Clark, E., Dean, J. and HallF. (2002).
Practical Software Measurement: Objective information for decision makers.
Addison Wesley, Boston, USA.

Mohammed M., Mohammad A. (2015). UML model refactoring: a systematic
literature review. In Empirical Software Engineering, v. 20, Issue 1, p. 206-251.

Moreira, G. de S. P., Mellado, R. P., Montini, D. A., Dias, L. A. V. and da Cunha, A.
M. (2010). Software product measurement and analysis in a continuous integration
environment. In Proc. of the 7th International Conference on Information
Technology: New Generations, p. 1177–1182.

Nardi, J. C., Falbo, R. A. and Almeida, J. P. A. (2013). A panorama of the semantic
EAI initiatives and the adoption of ontologies by these initiatives. In Proc. of the
IWEI 2013, LNBIP 144, Lecture Notes in Business Information Processing, p.
198–211.

Park, R. E., Goethert, W. B. and Florac, W. A. (1996). Goal-Driven Software
Measurement — A Guidebook. Carnegie Mellon University, Pittsburgh, PA,
CMU/SEI-96-HB-002.

Pokraev, S. (2009). Model-Driven Semantic Integration of Service-Oriented
Applications. PhD Thesis, University of Twente.

Solingen, R. and Berghout, E. (1999). The Goal/Question/Metric Method: a Practical
Guide for Quality Improvement of Software Development. McGraw-Hill.

Themistocleous, M., Irani, Z., Love, P. E. D. (2004). Evaluating the integration of
supply chain information systems: A case study. European Journal of
Operational Research, n. 159, p. 393–405.

Tian, J., Troster, J. and Palma, J. (1997). Tool support for software measurement,
analysis and improvement. J. Syst. Softw., v. 39, n. 2, p. 165–178.

Vernadat, F. B. (2007). Interoperable enterprise systems: Principles, concepts, and
methods. Annual Reviews in Control, v. 31, p. 137–145.

Wegner, P. (1996). Interoperability. In ACM Computing Survey, v. 28, n. 1, p. 285–
287.

