

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

A Method Based on Naming Similarity
to Identify Reuse Opportunities

Johnatan Oliveira, Eduardo Fernandes, Maurício Souza, Eduardo Figueiredo
Software Engineering Laboratory (LabSoft), Department of Computer Science

Federal University of Minas Gerais (UFMG)
Belo Horizonte, Brazil

{johnatan.si, eduardofernandes, mrasouza, figueired o}@dcc.ufmg.br

Abstract. Software reuse is a development strategy in which existing software
components are used to implement new software systems. There are many
advantages of applying software reuse, such as minimization of development
efforts and improvement of software quality. A few previous work propose
methods for recommendation of reuse opportunities. In this paper, we propose
a method for identification and recommendation of reuse opportunities based
on the similarity of the names of classes. Our method, called JReuse, computes
a similarity function to identify similarly named classes from a set of systems
from a specific domain. The identified classes compose a repository with reuse
opportunities. We also present a prototype tool to support the proposed
method. We applied our method, through the tool, to 72 systems, collected
from GitHub, of four different domains: accounting, restaurant, hospital, and
e-commerce. In total, these systems have 1,567,337 lines of code and 12,598
classes. As a result, we observe that JReuse is able to identify and recommend
the main, most frequent classes per domain.

1. Introduction

Software reuse is a development strategy in which existing software components, called
reusable assets, are used to implement new software systems [Krueger 1992]. Previous
work study and indicate this strategy as an alternative to the traditional development,
since reuse provides an increase of the software quality and a decrease of the
development efforts by using previously developed, and sometimes already tested,
software component [Mohagheghi and Conradi 2007, Morisio et al. 2002, Ravichandran
and Rothenberger 2003].

 The extraction of reusable assets is essential to support the software reuse
activity by building repositories of reuse opportunities [Guo and Luqi 2000]. These
methods may apply to different contexts related with software reuse, including the
support of feature extraction for a software product line [Lee et al. 2004]. Many
methods have been proposed in the literature to support the extraction of reuse
opportunities from software systems [Caldiera and Basili 1991, Kawaguchi et al. 2006,
Kuhn et al. 2007, Maarek et al. 1991, Ye and Fischer 2005].

 There are different approaches used by the proposed methods to identify reuse
opportunities, such as natural-language processing [Maarek et al. 1991], formal
specifications [Caldiera and Basili 1991], machine learning [Kawaguchi et al. 2006],

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

and other Information Retrieval (IR) approaches [Kuhn et al. 2007, Ye and Fischer
2005]. However, to the best of our knowledge, we did not find a method for extraction
of reuse opportunities and reuse recommendation considering the most frequent source
code elements such as classes from systems of the same domain.

 This paper is an extension of previous work [Oliveira, J., et.al 2016] that
proposes a method for extraction of reuse opportunities, called JReuse. Considering a
set of software systems, JReuse aims to identify classes with similar names through a
similarly analysis from different systems. Then, we are able to identify classes to
recommend as reuse opportunities. We also present a prototype tool that applies the
proposed method.

 Additionally to our earlier contributions, we conduct an evaluation of our
method through an experiment with 72 Java systems that belong to four different
domains: accounting, restaurant, hospital, and e-commerce. We collected all these
systems from GitHub1. As a result, we observe that JReuse is able to identify reuse
opportunities using naming similarity analysis. That is, our method can provide
meaningful classes for the analyzed domains, and these classes may represent reuse
opportunities to developers of new systems from the respective domain.

 The remainder of this paper is organized as follows. Section 2 presents
background to support the study comprehension, in addition to related work. Section 3
proposes the JReuse method for reuse opportunities extraction, as a prototype tool that
supports the proposed method. Section 4 presents an evaluation of the method. Section 5
describes the results obtained through the evaluation and discusses lessons learned.
Section 6 presents threats to the study validity. Finally, Section 7 concludes the paper
with suggestions for future work.

2. Background and Related Work

This section presents background information to support the comprehension of this
study. In addition, it discusses related work. Section 2.1 overviews software reuse and
its supporting techniques. Section 2.2 discusses related work that propose methods for
identification of reuse opportunities from software systems.

2.1. Software Reuse

In software reuse, developers use previously implemented software components to
develop new software systems [Krueger 1992]. The main goal of reuse is the
improvement of software quality aspects followed by an increase of the development
efficiency [Ravichandran and Rothenberger 2003]. There are many approaches to
support reuse in software development. As an example, Krueger (1992) presents an
extensive study regarding definitions, approaches, and application of software reuse.

 There are two main approaches of software reuse: ad hoc and systematic reuse
[Mohagheghi and Conradi 2007]. In the ad hoc approach, software reuse is applied in an
opportunistic way, without planning. An example of ad hoc reuse is the use of random
software code snippets extracted from the Web [Sojer and Henkel 2011]. In turn, the

1 https://github.com

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

systematic reuse follows specific protocols and processes to provide the use of existing
software components when developing new systems [Mohagheghi and Conradi 2007].
Moreover, there are two way to identify reuse opportunities: forward identification, in
which software reuse is planned before the development of software systems; and
reverse identification, in which reuse opportunities are identified from a set of existing
software systems [Wang et al. 2005].

 Previous work investigate advantages and drawbacks of systematic software
reuse [Mohagheghi and Conradi 2007, Mohagheghi et al. 2004]. Mohagheghi et al.
(2004) study the impacts of reuse on the software quality through an empirical study on
large-scale software components. They conclude that reuse contributes positively in the
software quality, since it provides software components with lower defect-density and
higher stability when compared with non-reused components. Mohagheghi and Conradi
(2007) provide a literature review on the impact of software reuse in the industrial
development context. They list decrease of flaws, reduction of development efforts, and
increasing productivity as the main advantages provided by software reuse.

 Several studies in the literature propose supporting techniques for identification
of reuse opportunities. For instance, natural language processing relies on lexical
inspection of source code elements [Maarek et al. 1991]. In turn, formal specifications
consists of conducting the analysis of software models and metrics [Caldiera and Basili
1991]. Finally, architectural style [Monroe and Garlan 1996] is a technique supported by
the analysis of high-level component interaction, generally applied to software design
and modeling; and machine learning that gathers different types of analysis, such as
semantic categorization of software components [Kawaguchi et al. 2006].

2.2. Identification of Reuse Opportunities

Previous work investigate the identification of reuse opportunities from software
systems [Inoue et al. 2005, Koziolek et al. 2013, Li et al. 2005, Mende et al. 2009,
Michail and Notkin 1999, Oliveira et al. 2007, Ye and Fischer 2005]. As an example,
Inoue et al. (2005) propose a graph-based technique to support the extraction of
frequently used components in a given software component repository. The proposed
technique relies on ranking components based on their usage by other components from
the repository. The authors also present a supporting tool called SPARS-J, for analysis
of Java classes and identification of reuse opportunities.

 In turn, Koziolek et al. (2013) present a technique for identification of reuse
opportunities based on domain analysis. The proposed technique aims to support the
assessment of potential Software Product Line implementation by organizations. This
technique encompasses feature modeling of the domain, comparison of systems in
architectural level, and the extraction of reusable components. However, unlike JReuse,
their technique does not compute similarity between names of classes with aim the
identify reuse opportunities.

 Li et al. (2005) present an approach for identification of reusable components
from legacy systems. The proposed approach aims to support reengineering tasks, i.e.
the implementation of new systems based on existing source code. For this purpose, the
authors propose the generation of the Abstract Syntax Tree (AST) for analysis and
extraction of modules and components as candidate for reuse. As a drawback, this

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

approach lacks a prioritization of the identified reuse opportunities, i.e. the propose
technique does not compute the relevance of the opportunities for recommendation to
the user. On the other hand, JReuse computes a prioritization score for the identified
reuse opportunities, based on the occurrence of the classes among the analyzed systems.

 Mende et al. (2009) propose a tool to support software evolution and
maintenance. For this purpose, the tool identifies similar methods along the source code
and recommends them to the developer by merging the identified methods. The
proposed tool computes code clones in method-level and uses the Levenshtein’s
algorithm for textual comparison of methods. As well as the mentioned technique,
JReuse uses the Levenshtein’s algorithm for textual comparison, but in the context of
similarity computation in the level of classes.

 Michail and Notkin (1999) propose CodeWeb, a tool to support the comparison
of software libraries in terms of components, i.e. classes and methods, provided by these
libraries. For this purpose, the tool performs naming similarity computation to identify
similar classes and methods from a set of libraries. On the other hand, JReuse is able to
identify reuse opportunities in both libraries and traditional software systems
implemented in Java.

 Oliveira et al. (2007) propose a method and a supporting tool for
recommendation of reusable software components. The tool applies a technique called
Automatic Identification of Software Components to identify candidate components for
reuse. The tool, called Digital Assets Discoverer, performs static code analysis for
identification of reuse opportunities. The tool, called Digital Assets Discoverer,
performs static code analysis for identification of reuse opportunities. In this type of
source code analysis, there is no requirement for the source code to run [Ramler et al.
2016]. Therefore, the static analysis is the opposite of the dynamic analysis, in which
source code has to compile and run to be analyzed [Cornelissen et al. 2009]. In
addition, the proposed tool provides an interactive graphic interface and data export. As
a differential to this previous work, JReuse prioritizes the identified reuse opportunities.

 Finally, Ye and Fischer (2005) present CodeBroker, a tool to support runtime
identification of reusable software components. The proposed tool relies on information
retrieval techniques. CodeBroker relies on search engines and Javadoc artifacts for code
analysis. Our method, JReuse, performs static analysis of the source code and, therefore,
does not provide code analysis in runtime. We decided to propose a method based on
static analysis since we aim to analyze several systems at the same time and, therefore,
the runtime analysis could be a significant limitation of our method. However, as
aforementioned, JReuse provides the prioritization of reuse opportunities.

 In this paper, we propose a method and a supporting tool, both called JReuse, to
identify classes as candidates for reuse in systems from a domain. For this purpose, we
apply lexical code analysis. Unlike related work, our method applies to two scenarios.
First, to support the identification of reuse opportunities in software systems. Second, to
guide users regarding the partial design of software systems under development, by
recommending the most frequent entities that may compose the new system. Our
method also ranks software entities identified as reuse opportunities by their frequency
of appearance in different systems from the domain. We expect to support reuse by
suggesting classes that are the most used in systems from a specific domain.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

3. Proposed Method

This section explains in detail the proposed method for identification of reuse
opportunities. Section 3.1 describes the similarity-based process applied by our method
to identify reuse opportunities. Section 3.2 proposes our method and its steps. Finally,
Section 3.3 presents a tool that implements our method.

3.1. Identifying Similarity

Previous work investigate the use of textual similarity in the context of source code
analysis [Tian et al. 2014, Zhen et al. 2008]. There are many applications for similarity
analysis in software systems, such as comparison of dialects, spell check, and plagiarism
detection [Liu and Lu 2008]. Our propose method, JReuse, takes advantage of source
code and similarity analysis for identification of reuse opportunities. As discussed in
Section 2.2, our method uses the static source code analysis [Cornelissen et al. 2009] for
identification of reuse opportunities based on the similarity between names of classes.
 We conducted an ad hoc literature review in order to select algorithms that
compute similarity between strings to be used by our method. For this purpose, we
searched for the most popular similarity computation algorithms to find the one that fits
our study purpose. After the literature review, we selected the Levenshtein’s algorithm
[Yujian and Bo 2007]. This algorithm is a similarity function used by our method to
compute lexical similarity between names of classes from different systems. In short
terms, given two strings A and B, the algorithm computes the number of changes
required to turn A into B.

 To identify similarly named classes, we adopted a threshold of 75% for the
minimum similarity between two names of entities. The authors of this study derived
empirically such threshold because some well-known naming conventions for classes
may lead to similarly named entities that clearly represent different purposes. As an
example, we obtain a similarity of 72% for the class names Costumer and
CostumerDAO , observed by the authors as frequent names of classes in e-commerce
systems. However, we intuitively expect that two classes with these names implement
different functions, since DAO classes implement database persistence.

 Table 1 presents some examples of class names and the respective similarity rate
using the chosen algorithm. We checked each class name in the table to identify typos.
As a result, we observed that they correspond to the exact terms identified by JReuse. In
Table 1, we present eight matches between names of classes from two software systems:
System A and System B. Each match has at least 75% of similarity rate between names
of classes, in accordance to our empirical threshold. Note that our threshold covers, for
instance, names of classes that vary from singular to plural (e.g., Client and
Clients).

3.2. Proposed Method and Its Steps

A software domain is a set of systems that share a common set of functionalities,
requirements, or terminology [Neighbors 1992, Pressman 2005]. Therefore, we expect
that software systems within the same domain present lexical similarity with respect to

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 1. Examples of similarity computation

System A System B Similarity Rate
ShoppingCart ShoppCart 75%
OrderProductId OrderProduc 78%
Orderservice Orderservi 83%
Reviwes Reviwe 85%
Clients Client 85%
CartController CartControll 85%
Products Product 87%
ProductsController ProductController 94%

the names of classes. In this context, similarly named classes may contribute to the
comprehension of the characteristics of systems from a given business domain
[Cybulski and Reed 2000].

 Considering this scenario, our study proposes JReuse, a method for identification
of reuse opportunities from software systems. Our method is based on naming lexical
similarity of classes. Given a set of software systems from the same domain, JReuse
compares names of classes, in pairs, to identify common names among different
systems. We believe that recurring names of classes may indicate reuse opportunities in
a given domain. Furthermore, frequent names of classes may indicate common
behaviors and requirements of these entities [Cybulski and Reed 2000].

 In general, similarity rate is not enough for electing a class as a possible reuse
opportunity [Ye and Fischer 2005]. We then consider the classes that are more frequent
among the systems for recommendation. Note that, for instance, a name of class with
matches in 10 different systems is more frequent than a name of class that matches in
only 2 systems. Figure 1 illustrates the comparison between classes performed by
JReuse. We provide a description of this process as follows.

Figure 1. Steps to identify common classes

 Consider array[1..n] an array of names of classes and two pointers i = {1,
.., n-1} and j = {2, .., n} . For each i , we compare array[i] with
array[j] for j = {i+1, .., n} . If array[i] is similar to array[j] with a
minimum similarity rate of 75%, then the method registers a reuse opportunity. JReuse
compares all classes from the set of systems to identify the similarly named classes.
Since our method relies on lexical analysis, we do not perform synonymous analysis.
Therefore, we say that classes such as Client and Customer , that may be similar
semantically, are different entities in the source code.

 Figure 2 presents the five steps performed by JReuse to identify reuse
opportunities in a set of systems. We describe each step as follows.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Figure 2. Steps of the JReuse method

1. First, the JReuse method receives, as input, software systems from a data set
provided by the user. These systems are supposed to belong to the same domain.
Then, the method filters non-Java source files, discards every system projects
that are for the Android platform, and extracts the names of classes from the
Java source files.

2. After, the method extracts the names of classes to compute the similarity rates
between pairs of classes from the systems. We highlight that JReuse does not
compare names of classes from the same software system.

3. Then, JReuse compares the names of classes in pairs to identify names with at
least 75% of similarity. Classes with similar names, called matches, are gathered
and each class name receives a score that is the number of systems in which the
class occurs. The higher the score, the more relevant may be the class regarding
the analyzed domain.

4. After comparing names of classes and computing similarity, JReuse sorts the
obtained results, in decreasing order, by the frequency of the identified reuse
opportunities.

5. Finally, JReuse composes a repository of candidates to reuse opportunities with
the identified classes. This repository may support developers in using such
reuse opportunities to implement new systems of the analyzed domain.

3.3. Tool Support

To automate the proposed method, we developed a prototype tool that implements
JReuse for Java software systems. We selected Java because (i) it is one of the most
popular programming languages2, (ii) there is an available Java parser to support source
code analysis by the generation of an Abstract Syntax Tree (AST), and (iii) many studies
have been investigating software reuse in Java systems. Through the Java parser, we
may access the source code structure, Javadoc, and comments, for instance. It is also
possible to change the AST nodes or create new ones to modify the source code. We
also used the Eclipse Java Development Tools (JDT) parser to support the identification
of similarly named classes.

 The supporting tool performs three steps to identify reuse opportunities. We
describe each step as follows.

1. First, the tool retrieves the name of all classes from a software system data set.
This step is important to support the similarity computation among classes from
different systems.

2 http://spectrum.ieee.org/static/interactive-the-top-programming-languages-2015

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

2. After, the tool compares the names of classes, in pairs, to identify class names
with at least 75% of similarity. Classes with similar name, that is, matches, are
gathered and each class name receives a score that is the number of systems in
which the class occurs. The higher a score, the more relevant may be the class
with respect to the analyzed domain.

3. Finally, the tool persists the classes identified and extracted as reuse
opportunities in a database.

 JReuse provides an abstraction for the design organization of a system given a
domain. In other words, the developers may use the reuse opportunities identified by
JReuse to compose a partial design for any system that belongs to the analyzed domain
in terms of frequent classes. For this purpose, the tool provides output as a CSV file.
Each line of the file contains (i) the name of a class identified as reuse opportunity and
(ii) the absolute path of the class. JReuse sorts the output file, in decreasing order, by
the frequency of the identified reuse opportunities.

4. Evaluation Settings

This section describes an empirical evaluation of the method proposed in Section 3. For
this purpose, we designed an exploratory study conducted in environment controlled
based on guidelines of Wohlin et al. (2012). Since JReuse aims to identify the main
reuse opportunities from software systems, our evaluation consists of analyzing the
reuse opportunities identified by the proposed method.

 Section 4.1 presents the study goal and research questions designed to guide our
study. Section 4.2 describes the steps to evaluate our method through a prototype tool.
Section 4.3 discusses the steps for collecting the target systems from GitHub. Section
4.4 describes the exclusion criteria to compose the final set of systems for analysis.
Section 4.5 presents the strategy adopted by JReuse to compute the similarity between
classes. Finally, Section 4.6 presents the data set used to evaluate the JReuse method.

4.1. Goal and Research Questions

In this study, our goal is to assess whether JReuse is able to identify frequent classes in a
specific software domain. We are also interested in assessing the relevance of the results
provided by our method. For this purpose, we chose four domains to evaluate, namely
accounting, restaurant, hospital, and e-commerce. We also designed the following
research questions (RQs) to guide our study.

RQ1. What are the most frequent classes in software systems for each selected domain?

 Through RQ1, we are interested in investigating whether the most frequent
identified classes are useful as recommendations for software systems for the respective
domain. We expect that JReuse is able to provide a list of classes whose
recommendations for reuse are relevant for the respective domains.

RQ2. How distributed are the most frequent classes through systems per domain?

 With RQ2, we aim to understand to what extent the same class, identified as one
of the most frequent classes, occur in different software systems from a given domain.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

For instance, we aim to understand if the same name of class can occur in all analyzed
systems, or in most of them.

4.2. Evaluation Steps

To evaluate JReuse in identifying reuse opportunities, we chose systems from domains
of accounting, restaurant, hospital, and e-commerce. We chose such domains for the
following reasons. First, software systems from these domains encompass several basic
business features, such as user and product management. Second, there is a significant
number of systems, per domain, available for download in GitHub. Third, from the
perspective of the authors of this study, the four chosen domains are well-defined in
terms of requirements and, therefore, we believe that it might be possible to find several
reuse opportunities among systems of these domains.

 We extracted the systems that compose our data set from GitHub repositories.
We performed the selection of systems for the e-commerce domain in January 2015 and
in May 2016 for the other domains. We selected the software systems based on the
ranking of starred systems and system length in terms of storage space. In GitHub, stars
are a meaningful measure for repository popularity among the platform users, and may
support the selection of relevant systems for study.

 Figure 3 presents the three study steps we followed to investigate the two
research questions described in Section 4.1. We list the steps as follows.

 Figure 3. Steps of the exploratory study

Step 1: Automated Search. This step consists of colleting a set of software systems from
GitHub for analysis (see Section 4.3).

Step 2: Exclusion Criteria. This step is a filtering of the collected systems, aiming to
discard the inappropriate systems for analysis (see Section 4.4.).

Step 3: Class Name Similarity. This step consists of running JReuse to identify the reuse
opportunities in class-level (see Section 4.5).

4.3 Automated Search

In order to clone automatically several systems from GitHub, we needed to define
appropriate search strings per domain since there is a diverse terminology to represent
the same software domain. For instance, we may refer to the e-commerce domain as
ecommerce, without hyphenation. Thus, to collect the software systems that compose
our data set, we developed an algorithm to clone GitHub repositories individually, with
the respective systems, based on a specific search string per analyzed domain. Since the
goal of our study is to identify reuse opportunities from different software systems,
given large system sets per domain, we defined the search strings presented in Table 2.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 2. Search string per domain

Domain Search String
Accountancy Accountancy OR Accounting
Restaurant Restaurant OR Eatery OR Restaurants
Hospital Hospital OR Infirmary OR Lazaretto
E-Commerce E-Commerce OR Ecommerce OR Electronic Commerce

4.4 Exclusion Criteria

We did a rigorous and transparent selection of the target systems, and attempted to
minimize the risk of bias due to process of mined of projects from GitHub to a
minimum by applying strict exclusion criteria. Table 3 presents the exclusion criteria
applied in the selected systems. We collected 400 Java systems from GitHub, 100 for
each domain in order descending sorted by stars. We then discarded systems according
to the four following exclusion criteria.

Table 3. Exclusion criteria applied to the data set

Domain
Discarded Systems per Exclusion Criteria Selected

System Non-Java Android < 1 KLOC Not English
Accounting 12 17 51 9 11
Restaurant 4 27 53 3 13
Hospital 7 24 40 16 13
E-Commerce 21 3 20 21 35

All 44 71 164 49 72

 First, non-Java software systems, since GitHub do not verify automatically the
main programming languages of the systems. Second, Java projects developed for
Android platform, because Android systems tend to have a different architectural design
and code implementation when compared with traditional Java systems. Third, systems
with less than 1,000 lines of code (LOC). Fourth, systems written in other languages
rather than English, since our method relies on a lexical similarity technique and, then,
natural language may affect significantly the results provided by our method.

4.5. Class Name Similarity

From each selected domain as described in the previous steps, we performed analysis
through JReuse. To identify and extract reuse opportunities, we executed the tool that
provides support the developed method for 72 collected software systems from GitHub.
These systems were submitted to JReuse for extraction of reuse opportunities. JReuse
compares the names of classes in pairs to identify names with at least 75% of similarity.
Classes with similar names, called matches, are gathered and each class name receives a
score that is the number of systems in which the class occurs. The higher the score, the
more relevant may be the class regarding the analyzed domain. After the automated
analysis for each domain, JReuse provided a list with the most frequent classes that
occur in the domain.

4.6 Data Set

The systems that compose our data set were retrieved from GitHub. For each selected
system, we considered only the last release. This process was necessary to discard
different versions of the same system, which probably contain several classes with
similar names. Finally, we obtained 72 Java systems for evaluation of the JReuse

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

method, as indicated in Table 4. To better characterize systems in the four domains,
Figures 4 and 5 presents software metrics for systems per domain: LOC and number of
classes (NOC), respectively. We plotted twelve boxplots, one for each metric. However,
because of the heterogeneity of the sample of our data set, we decided to eliminate
“outliers” for each metric. Therefore, all boxplots presented a brief overview of each
analyzed domain.

 Let us consider Figure 4 in the following analysis of LOC. In this figure, we
represent the mean of each distribution with “X”. Table 4 provides addition descriptive
data, i.e. the data that compose the boxplots from Figure 4. With respect to the
accounting domain, we observe that the mean of LOC for the systems is 8,690.
Moreover, the median is 5,112, i.e., half of the accounting systems has at least 4 KLOC.
That is, a significant number for analysis and identification of reuse opportunities.

(a) Accounting (b) Restaurant (c) Hospital (d) E-commerce

Figure 4. LOC of the systems per domain

Table 4. Descriptive analysis of LOC per domain

Domain 1st Quantile Median 3st Quantile Mean Std. Dev.
Accounting 3,112 5,112 6,229 8,690 11,952.08
Restaurant 2,187 3,256 4,519 3,447 1,527.15
Hospital 1,700 2,534 5,346 4,964 6,223.94
E-Commerce 1,805 3,730 8,691 46,100 107,045.3

 Regarding the restaurant domain, the mean of LOC is 3,447. In addition, the
median is 3,256. Again, we conclude that these systems have a significant LOC for
analysis. For the hospital domain, the mean is 4,964 and the median is 2,534 of LOC.
Although these values are smaller than the obtained values for the other domains, it
remains significant for the study. Finally, with respect to the e-commerce domain, we
observe a mean LOC of 46,100 and a median of 3,730. In general, systems from this
domain have the highest numbers of LOC and, therefore, they may have several reuse
opportunities.

 With respect to the following analysis of NOC, consider Figure 5. In this figure,
we represent the mean of each distribution with “X”. Table 5 provides addition
descriptive data, i.e. the data that compose the boxplots from Figure 5. Regarding the
accounting domain, note that the mean of NOC for the systems is 35.73. Furthermore,
the median is 18, i.e., half of the accounting systems has at least 18 classes. This number
is significant for analysis because we are interested in finding similarly named classes
within a pairwise comparison. Therefore, we expect a comparison of 18 * 18 = 324 pairs
that may be reuse opportunities.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

(a) Accounting (b) Restaurant (c) Hospital (d) E-commerce

Figure 5. NOC of the systems per domain

Table 5. Descriptive analysis of NOC per domain

Domain 1st Quantile Median 3st Quantile Mean Std. Dev.
Accounting 9.5 18 32 35.73 48.01
Restaurant 26 40 45 37.23 14.35
Hospital 18 25 46 33.85 24.19

E-Commerce 26 45.5 100.2 368 819.72

 Regarding the restaurant domain, the mean of NOC is 37.23. In addition, the
median is 40. Again, we conclude that these systems have a significant NOC for
analysis. For the hospital domain, the mean is 33.85 and the median is 25 of NOC.
Finally, with respect to the e-commerce domain, we observe a mean NOC of 368.9 and
a median of 45.5. In general, systems from this domain has the highest numbers of NOC
and, therefore, there is a significant possibility of identifying reuse opportunities.

5. Results and Discussion

In this section, we present and discuss the main results of our empirical evaluation with
JReuse. Section 5.1 presents the most frequent classes identified by JReuse per domain.
Section 5.2 focus on the distribution of the most frequent classes through the systems of
each domain. Finally, Section 5.3 provides an overview and discusses lessons learned.

5.1 Frequent Classes per Domain

In a first moment, we present the results regarding the most frequent classes per
analyzed domain. Therefore, we answer RQ1 as follows.

RQ1. What are the most frequent classes in software systems for each selected domain?

 In this study, we analyzed the frequency of similarly named classes for the
systems of each domain. Table 6 presents software metrics for systems per domain: lines
of code (LOC) and number of classes (NOC). This table categorizes NOC in two types:
(i) analyzed, i.e., the number of entities analyzed by the tool and (ii) recommended, that
is, entities identified by the tool as reuse opportunities. In general, from Table 6 we
observe that JReuse identified good results as candidates for reuse opportunities. For
instance, for domain e-commerce, JReuse identified 75 classes as reuse opportunities.

 In order to present and discuss the most frequent classes extracted as reuse
opportunities, we considered the following exclusion criteria of classes. For each
domain, we discarded classes that occur in a maximum of two different systems.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 6. Software metrics computed for the systems per domain

Domain
Number of

Systems
LOC

Number of Classes
Analyzed Recommended

Accounting 11 95,588 493 25
Restaurant 13 44,813 484 17
Hospital 13 65,297 446 21

E-Commerce 35 1,567,337 12,598 75

We made this decision because our method compares classes in pairs and, then, three
occurrences may not be significant to a reuse recommendation. To validate the lists of
most frequent classes per domain, we submitted such lists to a group of experts in the e-
commerce domain (also called domain experts). Four software engineers of a Software
Engineering laboratory compose this group of experts. The group was responsible for
analyzing the relevance of the results provided by JReuse in the context of each domain.

 Tables 7, 8, 9, and 10 present classes identified as reuse opportunities for e-
commerce, accounting, restaurant, and hospital, respectively. We selected only the
classes with at least 15%3 of occurrence in the systems of the respective domain. Each
table has a “Domain-Specific” field. This field indicates the viewpoint of the domain
experts regarding a given class to be specific for the analyzed domain. We use three
symbols to represent the domain experts viewpoint in the tables. The (�) symbol
indicates that the domain experts agreed that the class is specific for the domain under
analysis. The (X) symbol indicates that the domain experts disagreed that the class is
indicated for the domain. Finally, a blank field (i.e. Unconfirmed) indicates that the
domain experts did not converge to a specific opinion on the class. Moreover, each table
has a “Labels” filed to inform the level of relevance of the class identified by JReuse as
reuse opportunity.

Scale to Indicate the Level of Relevance of the Entities Identified. To support the
identification of the most recommended classes for each domain, we defined scales to
represent levels of recommendation for the classes. These scales rely on the frequency
of the classes identified as reuse opportunity. The weak label (from 0% to <50%)
indicates that the class is weakly or moderately recommended as a reuse opportunity
given a domain. In turn, the strong label (from 50% to 100%) indicates that the class is
highly recommended as a reuse opportunity.

 Table 7 presents results with respect to the accounting domain. In our analysis,
we discarded 161 classes because they presented less than 15% of frequency among
systems. For this domain, the classes from Users to TransactionManager belong to
the strong label and, therefore, they are the highly recommended classes for accounting
systems. On the other hand, the domain experts did not consider the classes Users ,
DatabaseConnection , and Util as specific classes for the accounting domain. In
addition, the classes from AddFinancialsAction to RawMaterial belong to the
weak label. The remainder classes have exactly two or three occurrences in different
systems from the accounting domain. Therefore, they are weakly recommended and
were omitted from this table.

3 The percentage depends on the number of systems under analysis given a domain

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 7. Classes with at least 15% of occurrences in the accounting domain

Label Class Frequency % of Systems Domain Specific

Strong

Users 13 100% X
DatabaseConnection 13 100% X
CashFlow 11 85% �

Util 10 77% X
BalancesAssets 9 69% �

CashBanks 9 69% �

ShareholderEquity 9 69% �

BalancesLiabilities 8 62% �

ChartAccounts 8 62% �

AccountingMovement 8 62% �

AccountsReceivable 8 62% �

AccountsPayable 6 46% �

Transactions 7 54% �

Log 7 54% X
FinancialReportsPoeHelper 7 54% X
InventoryManager 7 54% �

TransactionManager 7 54% �

Weak

AddFinancialsAction 6 46% �

Accounts 6 46% �

FeaturesAnalysis 6 46% �

RawMaterial 6 46% �

Key: Agree (X), Disagree (�), and Unconfirmed (blank field)

 Table 8 presents results for the restaurant domain. We discarded 13 classes since
they presented less than 15% of frequency among systems. The classes Login and User
belong to the strong label. From the domain experts viewpoint, these classes are not
specific classes in the domain. However, they are relevant in restaurant systems. The
classes from Client to Order belong to the strong label and are relevant for the
restaurant domain from the domain experts viewpoint. Note that, for many of the classes
identified by JReuse, the experts considered such classes as relevant reuse opportunities
for restaurant systems, even in the weak label, such as RestaurantMenu , Delivery ,
and Customer .

Table 8. Classes with at least 15% of occurrences in the restaurant domain

Label Class Frequency % of Systems Domain Specific

Strong

Login 10 77% X
User 10 77% X
ConnectionManager 9 70% X
Client 9 70% �
Table 8 62% �
PaymentType 8 62% �
Dish 8 62% �
Employee 7 54% �
Order 7 54% �

Weak

RestaurantMenu 6 47% �
Delivery 6 47% �
ItemOrdered 6 47% �
Customer 4 31% �

Key: Agree (X), Disagree (�), and Unconfirmed (blank field)

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

 Consider Table 9 for analysis of the hospital domain. We discarded a set of 25
classes because they have occurred in less than 15% of the systems. Observe that the
classes from Patient to Microbiology belong to the strong label and, therefore, they
are highly recommended classes as reuse opportunities. Note that, from the viewpoint of
the domain experts, the three most frequent classes are specific from hospital systems.
In fact, classes such as Patient and Doctor are meaningful in the domain. In addition,
classes from PatientCondition to OperationsWithCards are from the weak
label. Finally, the remainder classes have less than 10% of the occurrences.

Table 9. Classes with at least 15% of occurrences in the hospital domain

Label Class Frequency % of Systems Domain Specific

Strong

Patient 13 100% �

Doctor 13 100% �

Disease 11 85% �

User 10 77% X
Login 9 69% X
Diagnose 9 69% �

Symptoms 9 69% �

PatientDisease 8 62% �

HealthPlan 8 62% �

Immunology 8 62% �

Haematology 8 62% �

Medication 7 54% �

Surgery 7 54% �

MedicalRecords 7 54% �

TypePayment 7 54%

Microbiology 7 54% �

Weak

PatientCondition 6 46% �

LaboratoryExams 6 46% �

Log 6 46% X
HistoPathology 6 46% �

Connection 6 46% X
Paycash 5 38%

Util 5 38% X
OperationsWithCards 3 23%

Key: Agree (X), Disagree (�), and Unconfirmed (blank field)

 Finally, consider Table 10 for the analysis and discussion regarding the e-
commerce domain. For this domain, we discarded 3,573 classes because they were
present in less than 15% of the analyzed systems. Note that the classes Product to
ClientDao belong to the strong label. That is, they are highly recommended classes for
e-commerce systems, because they were present in more than 50% of the analyzed
systems. In addition, the classes Item to ShoppingCartService are the weakly
recommended classes. As aforementioned, we omitted the classes with less than 15% of
the occurrences.

 In general, we observed that the classes identified by JReuse are relevant to their
respective system domains, from the viewpoint of the domain experts. Although some
classes in the weak label are considered relevant, most of the group agreement was
related to classes in the strong label. Therefore, our data suggests that our method is able

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

to identify interesting candidates to reuse. We then are able to assess how distributed are
such classes among different systems from the same domain.

Table 10. Classes with at least 15% of occurrences in the e-commerce domain

Label Class Frequency % of Systems Domain Specific

Strong

Product 28 80% �

PaymentType 24 69% �

Client 20 58% �

ProductDao 18 52% �

ClientDao 18 52% �

Weak

Item 17 49% �

ShoppingCart 17 49% �

User 17 49% X
Customer 14 40% �

Category 12 35% �

ProductService 10 29% �

Order 9 26% �

LoginController 7 20% X
UserDao 6 18% �

ProductServiceImpl 6 18% �

ShoppingCartController 6 18% �

OrderedProduct 5 15% �

ShoppingCartService 5 15% �

Key: Agree (X), Disagree (�), and Unconfirmed (blank field)

5.2 Distribution of Frequent Classes

After presenting the most frequent classes from systems of each system domain under
analysis, we present the results with respect to the distribution of classes through
systems from the same domain. Therefore, we answer RQ2 as follows.

RQ2. How distributed are the most frequent classes through systems per domain?

 Figure 6 presents the top-ten most frequent classes for the accounting domain,
based on the number of occurrences for each class. Such classes are, in decreasing order
of frequency, Users , DatabaseConnection , CashFlow , Util , BalancesAssets ,
CashBanks , ShareholderEquity , BalancesLiabilities , ChartAccounts , and
AccountingMovement . We observe that, although only CashFlow is specific to the
given domain from the viewpoint of the domain experts, all classes from this label are
meaningful in accounting systems.

 Regarding the restaurant domain analysis, Figure 7 presents the top-ten classes
with the highest occurrences, namely Login , User , ConnectionManager , Client ,
Table , PaymentType , Dish , Employee , Order , and RestaurantMenu . These
classes have a high to medium level for recommendation according to our scale defined
in Section 5.1. The classes with the highest occurrences in this domain are Login and
User , respectively. Both classes were present in 77% of the analyzed information
systems. Nevertheless, they are not specific classes of restaurant systems. In turn,
JReuse was able to identify several frequent classes such as Client , Table ,
PaymentType , and Dish .

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Figure 6. Distribution of frequent classes through accounting systems

Figure 7. Distribution of frequent classes through restaurant systems

 Figure 8 presents the most frequent classes identified for the hospital domain, in
decreasing order of frequency. For the 13 systems we collected from this domain,
JReuse extracted some relevant entities, such as Patient , Doctor , and Disease ,
from the domain experts agreement. The classes presented in this figure belong to the
strong label. Note that the classes Patient and Doctor were present in 100% of the
evaluated systems. Similarly, to the other domains, JReuse identified some classes that
are generic, i.e. classes expected in systems from other domains, such as User (77%).

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Figure 8. Distribution of frequent classes through hospital systems

 Finally, Figure 9 presents the top-ten most frequent classes for e-commerce
systems. We sorted the classes in decreasing order of frequency. The most frequent
entities are, respectively, Product , PaymentType , Client , ProductDao ,
ClientDao , Item , ShoppingCart , User , Customer , and Category . Note that,
according to the domain experts the classes Product , Payment , ShoppingCart ,
Customer , and Client are elementary entities, i.e. we expect them in an e-commerce
system. In turn, although User is one of the most frequent classes identified by JReuse
(49% of the systems contain this class), User is not specific of the e-commerce domain.
However, this class is meaningful for information systems in general.

Figure 9. Distribution of frequent classes through e-commerce systems

5.3 Lessons Learned

In this study, we learned a lot regarding interesting research topics such as software
reuse, reuse opportunities identification, and recommendation systems. For this propose,

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

we take as an example the e-commerce domain, especially by the popularity and size of
these systems on GitHub. We discuss some of the main lessons learned with support of
the following questions.

How much a lexical analysis may support the identification of reuse opportunities
assets? As discussed in Section 2, there are many approaches to support software reuse
in literature. Lexical analysis is a simple one. However, as pointed by the results of
Section 5, it may be effective to identify reuse opportunities in systems from a single
domain. Moreover, we initially conceived our method to gather classes with names that
are semantically similar. However, through our study we identified some occurrences of
similar entities in an intuitive fashion that do not represent the same real-world concept.

 In our exploratory study, which was conducted in a controlled environment (see
Section 4), we found for instance, frequent classes such as Client and Costumer have
distinct behaviors although intuitively they represent the same real-world abstraction.
Some classes named as Client implement a simplistic system client, which register
data. In turn, Costumer classes generally implement system clients with more robust
features, such as data management. Therefore, we conclude that lexical analysis
performs satisfactorily to identify reuse opportunities at least in this domain.

Are names of classes suitable to the entities they represent in a business domain? We
discuss in Section 3.2 that names of classes may be useful for reuse opportunities
identification. In fact, we observed that naming similarity identification might support
reuse opportunities identification. However, to retrieve similarly named classes may be
uninteresting if they are not representative in a specific domain. Section 5 highlights the
identified classes that fit to e-commerce domain. These entities are the most frequent
that our tool detected.

 Therefore, we believe that names of entities are, in general, sufficiently
representative. Moreover, we observed in this study that our method is able to identify
reuse opportunities in randomly mined systems from GitHub, provided by different
development teams. Therefore, we expect to obtain results that are even more relevant
in the context of a specific organization.

How to apply our reuse opportunities identification tool in a reuse recommendation
system? Classes are elementary entities of object-oriented software systems. Knowing
this type of source code entities, we are able to describe the architecture of a system.
Therefore, with results provided by our tool, we see an opportunity for reuse
recommendation through software modeling using class diagrams, for instance.

 To the best of our knowledge, we have not found many recent studies with
respect to reuse opportunities identification, supported by tools for this activity, and
methods to support the building of reuse repositories with similar approach. Therefore,
as an interesting research topic, we lack more quantitative data to measure and compare
different techniques that support software reuse.

6. Threats to Validity

We based our study on related work to support the method definition and the
development of the supporting tool, both called JReuse. Regarding the evaluation of our
method and tool, we conducted a careful empirical study to assess effectiveness of the

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

method in identifying reuse opportunities. However, some threats to validity may affect
our research findings. We discuss the main threats and respective treatments as follows,
based on the categories presented by Wohlin et al. (2012).

Construct Validity. Before running our reuse opportunities identification method, we
conducted a careful filtering of information systems from GitHub repositories.
However, some threats may affect the correct filtering of systems, such as human factors
that wrongly lead to discard a valid system for evaluation. Considering the exclusion
criteria for selection of systems (see Section 4.2), we implemented an algorithm to
automate this process and, then, discard inappropriate systems for analysis. However,
we may have discarded relevant software systems by using our algorithm, such as
systems misidentified as non-Java systems.

Internal Validity. We conducted a lexical classification of entities that are prone to
some threats. To treat this possible problem, we selected a sample of 10 e-commerce
systems from our data set, with diversified number of entities. Then, we manually
identified the names of entities from source code to find synonyms. We compared our
manual results with the results provided by the tool and observed a loss of 10% in
synonym terms identified through the automated process.

Conclusion Validity. After running our identify tool, we gathered manually classes that
seemed to represent the same real-world object. For instance, we considered classes
named as Client and Costumer as the same type of class. However, this process is
subjective and human factors may have affected it. In this first exploratory study, we
decided for not unifying terms (for instance, Customer and Client) in the quantitative
analysis.

External Validity. We evaluated our method with a set of 72 systems, extracted from
GitHub. Considering that they may not represent the four analyzed domains, our
findings may be not be generalized. Furthermore, we evaluated only four system
domains, accounting, restaurant, hospital, and e-commerce. However, the collected
systems are the most popular on GitHub that is a largely used platform. Finally, we
evaluated systems implemented only in Java programming language. Although it is one
of the most popular languages worldwide, our results may not generalize to other
programming languages.

7. Conclusion and Future Work

In a previous work, we proposed JReuse, a method to identify reuse opportunities from
software system of a specific domain. Our method relies on lexical analysis to compare
names of classes and identify the most frequent ones. In addition, we present a prototype
tool that implements the method for analysis of Java software systems. Finally, we
conduct a preliminary evaluation of our method with 38 software systems of the e-
commerce domain, collected from GitHub. Given the limitations of our previous effort
to evaluate the proposed method, this paper extends our earlier contributions with a
more extensive evaluation of JReuse in the context of four different software domains:
accounting, restaurant, hospital, and e-commerce. For this purpose, we analyzed a large
set of 72 Java systems also collected from GitHub.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

 We evaluate JReuse through an exploratory study conducted in a controlled
environment, considering two aspects. First, we assess whether the most frequent
classes provided by our method are relevant for the respective domains. Second, we
assess the distribution of frequent names of classes among different systems of the same
domain. Our findings suggest that our method was able to suggest relevant classes for
systems from the four analyzed domains. The opinion of a group of domain experts
reinforces our findings. This group validated our results and indicated high rates of
agreement with respect to the relevance of the reuse opportunities provided by JReuse.
In addition, our data suggest that the most frequent classes provided as candidates for
reuse were present in a significant number of different systems of the respective
analyzed software domains.

 As future work, we intend to enhance JReuse to suggest source code to
developers based on the most frequent classes identified by the proposed method. In
addition, we aim to combine lexical with semantic analysis to improve the identification
of reuse opportunities. For instance, the semantic analysis may support analysis of
synonyms and improve our results of identification. In addition, we may explore
alternative techniques for similarity computation. We also intend to implement our
method targeting other object-oriented programming languages.

References

Caldiera, G. and Basili, V. R. (1991). Identifying and Qualifying Reusable Software
Components. IEEE Computer, 24(2):61–70.

Cornelissen, B., Zaidman, A., Van Deursen, A., Moonen, L., and Koschke, R. (2009). A
Systematic Survey of Program Comprehension through Dynamic Analysis. IEEE
Transactions on Software Engineering (TSE), 35(5):684–702.

Cybulski, J. and Reed, K. (2000). Requirements Classification and Reuse: Crossing
Domain Boundaries. In Proceedings of the 6th International Conference on Software
Reuse (ICSR), pages 190–210.

Guo, J. and Luqi (2000). A Survey of Software Reuse Repositories. In Proceedings of
the 7th International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS), pages 92–100.

Inoue, K., Yokomori, R., Yamamoto, T., Matsushita, M., and Kusumoto, S. (2005).
Ranking Significance of Software Components based on Use Relations. IEEE
Transactions on Software Engineering (TSE), 31(3):213–225.

Kawaguchi, S., Garg, P., Matsushita, M., and Inoue, K. (2006). MUDABlue: An
Automatic Categorization System for Open Source Repositories. Journal of Systems
and Software (JSS), 79(7):939-953.

Koziolek, H., Goldschmidt, T., Gooijer, T., Domis, D., and Sehestedt, S. (2013).
Experiences from Identifying Software Reuse Opportunities by Domain Analysis. In
Proceedings of the 17th International Software Product Line Conference (SPLC),
pages 208–217.

Krueger, C. (1992). Software Reuse. ACM Computing Surveys (CSUR), 24(2):131–183.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Kuhn, A., Ducasse, S., and Gírba, T. (2007). Semantic Clustering: Identifying Topics in
Source Code. Information and Software Technology (IST), 49(3):230–243.

Lee, J., Kang, K. C., and Kim, S. (2004). A Feature-Based Approach to Product Line
Production Planning. In Proceedings of the 3rd International Conference on
Software Product Lines (SPLC), pages 183–196.

Li, J., Zhang, Z., and Yang, H. (2005). A Grid Oriented Approach to Reusing Legacy
Code in ICENI Framework. In Proceedings of the 3rd International Conference on
Information Reuse and Integration (IRI), pages 464–469.

Liu, H. and Lu, R. (2008). Word Similarity based on an Ensemble Model using Ranking
SVMs. In Proceedings of the International Conference on Web Intelligence and
Intelligent Agent Technology (WI-IAT), pages 283–286.

Maarek, Y., Berry, D., and Kaiser, G. (1991). An Information Retrieval Approach for
Automatically Constructing Software Libraries. IEEE Transactions on Software
Engineering (TSE), 17(8):800–813.

Mende, T., Koschke, R., and Beckwermert, F. (2009). An Evaluation of Code Similarity
Identification for the Grow-and-Prune Model. Journal of Software Maintenance and
Evolution: Research and Practice, 21(2):143–169.

Michail, A. and Notkin, D. (1999). Assessing Software Libraries by Browsing Similar
Classes, Functions and Relationships. In Proceedings of the 21st International
Conference on Software Engineering (ICSE), pages 463–472.

Mohagheghi, P. and Conradi, R. (2007). Quality, Productivity and Economic Benefits of
Software Reuse: A Review of Industrial Studies. Empirical Software Engineering
(ESE), 12(5):471–516.

Monroe, R. and Garlan, D. (1996). Style-Based Reuse for Software Architectures. In
Proceedings of the 4th International Conference on Software Reuse (ICSR), pages
84–93.

Morisio, M., Ezran, M., and Tully, C. (2002). Success and Failure Factors in Software
Reuse. IEEE Transactions on Software Engineering (TSE), 28(4):340–357

Neighbors, J. (1992). The Evolution from Software Components to Domain Analysis.
International Journal of Software Engineering and Knowledge Engineering
(IJSEKE), 2(3):325–354.

Oliveira, J. Fernandes, E., Souza, M., and Figueiredo, E. (2016). A Method Based on
Naming Similarity to Identify Reuse Opportunities. In Proceedings of the XII
Brazilian Symposium on Information Systems (SBSI).

Oliveira, M., Goncalves, E., and Bacili, K. (2007). Automatic Identification of Reusable
Software Development Assets: Methodology and Tool. In Proceedings of 5th the
International Conference on Information Reuse and Integration (IRI), pages 461–
466.

Pressman, R. (2005). Software Engineering: A Practitioner’s Approach. McGraw-Hill
Education.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informação , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Ramler, R., Moser, M., and Pichler, J. (2016). Automated Static Analysis of Unit Test
Code. In Proceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 25–28.

Ravichandran, T. and Rothenberger, M. (2003). Software Reuse Strategies and
Component Markets. Communications of the ACM, 46(8):109–114.

Sojer, M. and Henkel, J. (2011). License Risks from Ad Hoc Reuse of Code from the
Internet. Communications of the ACM, 54(12):74–81.

Tian, Y., Lo, D., and Lawall, J. (2014). SEWordSim: Software-specific word similarity
database. In Proceedings of the 36th International Conference on Software
Engineering (ICSE), pages 568–571.

Wang, Z., Xu, X., and Zhan, D. (2005). A Survey of Business Component Identification
Methods and Related Techniques. International Journal of Information Technology,
2(4):229–238.

Wohlin, C., Runeson, P., Höst, M., Ohlsson, M., Regnell, B., and Wesslén, A. (2012).
Experimentation in Software Engineering. Springer Science & Business Media.

Ye, Y. and Fischer, G. (2005). Reuse-Conducive Development Environments.
Automated Software Engineering (ASE), 12(2):199–235.

Yujian, L. and Bo, L. (2007). A Normalized Levenshtein Distance Metric. IEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29(6):1091–
1095.

Zhen, Z., Shen, J., and Lu, S. (2008). WCONS: An Ontology Mapping Approach based
on Word and Context Similarity. In Proceedings of the International Conference on
Web Intelligence and Intelligent Agent Technology (WI-IAT), pages 334–338.

