A Method Based on Naming Similarity
to Identify Reuse Opportunities

Johnatan Oliveira, Eduardo Fernandes, Mauricio &dtduardo Figueiredo
Software Engineering Laboratory (LabSoft), Deparitred Computer Science
Federal University of Minas Gerais (UFMG)

Belo Horizonte, Brazil
{johnatan.si, eduardofernandes, mrasouza, figueired o}@dcc.ufmg.br

Abstract. Software reuse is a development strategy in which existing software
components are used to implement new software systems. There are many
advantages of applying software reuse, such as minimization of development
efforts and improvement of software quality. A few previous work propose
methods for recommendation of reuse opportunities. In this paper, we propose
a method for identification and recommendation of reuse opportunities based
on the similarity of the names of classes. Our method, called JReuse, computes
a similarity function to identify similarly named classes from a set of systems
from a specific domain. The identified classes compose a repository with reuse
opportunities. We also present a prototype tool to support the proposed
method. We applied our method, through the tool, to 72 systems, collected
from GitHub, of four different domains. accounting, restaurant, hospital, and
e-commerce. In total, these systems have 1,567,337 lines of code and 12,598
classes. As a result, we observe that JReuse is able to identify and recommend
the main, most frequent classes per domain.

1. Introduction

Software reuse is a development strategy in whiestiag software components, called
reusable assets, are used to implement new sofsyatems [Krueger 1992]. Previous
work study and indicate this strategy as an alterado the traditional development,
since reuse provides an increase of the softwaeditguand a decrease of the
development efforts by using previously developadd sometimes already tested,
software component [Mohagheghi and Conradi 2007%;j9woet al. 2002, Ravichandran
and Rothenberger 2003].

The extraction of reusable assets is essentidufmport the software reuse
activity by building repositories of reuse oppoitigs [Guo and Lugi 2000]. These
methods may apply to different contexts relatechvgoftware reuse, including the
support of feature extraction for a software pradlice [Lee et al. 2004]. Many
methods have been proposed in the literature tpauphe extraction of reuse
opportunities from software systems [Caldiera aadiB1991, Kawaguchi et al. 2006,
Kuhn et al. 2007, Maarek et al. 1991, Ye and Fis2065].

There are different approaches used by the prdpoesthods to identify reuse
opportunities, such as natural-language procesfivigarek et al. 1991], formal
specifications [Caldiera and Basili 1991], machiearning [Kawaguchi et al. 2006],

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

and other Information Retrieval (IR) approaches HKwet al. 2007, Ye and Fischer
2005]. However, to the best of our knowledge, we bt find a method for extraction
of reuse opportunities and reuse recommendatiosidernng the most frequent source
code elements such as classes from systems dditine domain.

This paper is an extension of previous work [QlaeJ., et.al 2016] that
proposes a method for extraction of reuse oppdrasnicalled JReuse. Considering a
set of software systems, JReuse aims to identifgsels with similar names through a
similarly analysis from different systems. Then, & able to identify classes to
recommend as reuse opportunities. We also presenbtatype tool that applies the
proposed method.

Additionally to our earlier contributions, we carad an evaluation of our
method through an experiment with 72 Java systdms lbelong to four different
domains: accounting, restaurant, hospital, and neroerce. We collected all these
systems from GitHub As a result, we observe that JReuse is abledntifg reuse
opportunities using naming similarity analysis. Tha, our method can provide
meaningful classes for the analyzed domains, aedetltlasses may represent reuse
opportunities to developers of new systems fronrélspective domain.

The remainder of this paper is organized as fdlowection 2 presents
background to support the study comprehensiondditian to related work. Section 3
proposes the JReuse method for reuse opportueiieaction, as a prototype tool that
supports the proposed method. Section 4 presemgahmation of the method. Section 5
describes the results obtained through the evaluand discusses lessons learned.
Section 6 presents threats to the study validityalfy, Section 7 concludes the paper
with suggestions for future work.

2. Background and Related Work

This section presents background information topsupthe comprehension of this
study. In addition, it discusses related work. BacR.1 overviews software reuse and
its supporting techniques. Section 2.2 discusdesetework that propose methods for
identification of reuse opportunities from softwasestems.

2.1. Software Reuse

In software reuse, developers use previously impiged software components to
develop new software systems [Krueger 1992]. Thenngbal of reuse is the

improvement of software quality aspects followeddyincrease of the development
efficiency [Ravichandran and Rothenberger 2003]eréhare many approaches to
support reuse in software development. As an exanilueger (1992) presents an
extensive study regarding definitions, approached,application of software reuse.

There are two main approaches of software reags@&oc and systematic reuse
[Mohagheghi and Conradi 2007]. In theé hoc approach, software reuse is applied in an
opportunistic way, without planning. An exampleaofhoc reuse is the use of random
software code snippets extracted from the Web [Sapel Henkel 2011]. In turn, the

! https://github.com

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

systematic reuse follows specific protocols andesses to provide the use of existing
software components when developing new system$ifigleeghi and Conradi 2007].
Moreover, there are two way to identify reuse opyuties: forward identification, in
which software reuse is planned before the devetopnof software systems; and
reverse identification, in which reuse opportusitege identified from a set of existing
software systems [Wang et al. 2005].

Previous work investigate advantages and drawbatksystematic software
reuse [Mohagheghi and Conradi 2007, Mohagheghil.e2G04]. Mohagheghi et al.
(2004) study the impacts of reuse on the softwagdity through an empirical study on
large-scale software components. They concluderguaste contributes positively in the
software quality, since it provides software comgmus with lower defect-density and
higher stability when compared with non-reused conemts. Mohagheghi and Conradi
(2007) provide a literature review on the impactsoftware reuse in the industrial
development context. They list decrease of flaeduction of development efforts, and
increasing productivity as the main advantagesideal/by software reuse.

Several studies in the literature propose suppptechniques for identification
of reuse opportunities. For instance, natural |lagguprocessing relies on lexical
inspection of source code elements [Maarek et@1]L In turn, formal specifications
consists of conducting the analysis of software efdnd metrics [Caldiera and Basili
1991]. Finally, architectural style [Monroe and @ar1996] is a technique supported by
the analysis of high-level component interactioeneyally applied to software design
and modeling; and machine learning that gathererdifit types of analysis, such as
semantic categorization of software components &gawhi et al. 2006].

2.2. ldentification of Reuse Opportunities

Previous work investigate the identification of seuopportunities from software
systems [Inoue et al. 2005, Koziolek et al. 201BetLal. 2005, Mende et al. 2009,
Michail and Notkin 1999, Oliveira et al. 2007, YedaFischer 2005]. As an example,
Inoue et al. (2005) propose a graph-based techniqusupport the extraction of
frequently used components in a given software amapt repository. The proposed
technique relies on ranking components based onubkage by other components from
the repository. The authors also present a sumpgpttiol called SPARS-J, for analysis
of Java classes and identification of reuse oppdrés.

In turn, Koziolek et al. (2013) present a technidoe identification of reuse
opportunities based on domain analysis. The praposehnique aims to support the
assessment of potential Software Product Line implgation by organizations. This
technique encompasses feature modeling of the apncamparison of systems in
architectural level, and the extraction of reusalgmponents. However, unlike JReuse,
their technique does not compute similarity betweames of classes with aim the
identify reuse opportunities.

Li et al. (2005) present an approach for iderdifien of reusable components
from legacy systems. The proposed approach ainssigport reengineering tasks, i.e.
the implementation of new systems based on existngce code. For this purpose, the
authors propose the generation of the Abstracta8yiree (AST) for analysis and
extraction of modules and components as candidateeuse. As a drawback, this

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

approach lacks a prioritization of the identifieglise opportunities, i.e. the propose
technique does not compute the relevance of therappties for recommendation to
the user. On the other hand, JReuse computes tipation score for the identified
reuse opportunities, based on the occurrence afléisses among the analyzed systems.

Mende et al. (2009) propose a tool to supportwsoft evolution and
maintenance. For this purpose, the tool identdieslar methods along the source code
and recommends them to the developer by mergingidaetified methods. The
proposed tool computes code clones in method-lewel uses the Levenshtein’'s
algorithm for textual comparison of methods. As Iwas the mentioned technique,
JReuse uses the Levenshtein’s algorithm for textaaiparison, but in the context of
similarity computation in the level of classes.

Michail and Notkin (1999) propose CodeWeb, a tocsupport the comparison
of software libraries in terms of components, ¢lasses and methods, provided by these
libraries. For this purpose, the tool performs nmagrsimilarity computation to identify
similar classes and methods from a set of librafsthe other hand, JReuse is able to
identify reuse opportunities in both libraries andhditional software systems
implemented in Java.

Oliveira et al. (2007) propose a method and a eupg tool for
recommendation of reusable software components.tddieapplies a technique called
Automatic Identification of Software Componentsdentify candidate components for
reuse. The tool, called Digital Assets Discovergrforms static code analysis for
identification of reuse opportunities. The tool lled Digital Assets Discoverer,
performsstatic code analysis for identification of reuse opportunities. In thigpe of
source code analysis, there is no requirementh®isburce code to run [Ramler et al.
2016]. Therefore, the static analysis is the ogposi thedynamic analysis, in which
source code has to compile and run to be analy@eunglissen et al. 2009]. In
addition, the proposed tool provides an interacgragphic interface and data export. As
a differential to this previous work, JReuse ptirés the identified reuse opportunities.

Finally, Ye and Fischer (2005) present CodeBroketpol to support runtime
identification of reusable software components. praposed tool relies on information
retrieval techniques. CodeBroker relies on seangiines and Javadoc artifacts for code
analysis. Our method, JReuse, performs static sisady the source code and, therefore,
does not provide code analysis in runtime. We aetid propose a method based on
static analysis since we aim to analyze severaésysat the same time and, therefore,
the runtime analysis could be a significant limdat of our method. However, as
aforementioned, JReuse provides the prioritizatioreuse opportunities.

In this paper, we propose a method and a suppadxiivl, both called JReuse, to
identify classes as candidates for reuse in systemsa domain. For this purpose, we
apply lexical code analysis. Unlike related worliy onethod applies to two scenarios.
First, to support the identification of reuse ogpoities in software systems. Second, to
guide users regarding the partial design of softwsystems under development, by
recommending the most frequent entities that maypose the new system. Our
method also ranks software entities identifiedease opportunities by their frequency
of appearance in different systems from the dom@ie. expect to support reuse by
suggesting classes that are the most used in sy$tem a specific domain.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

3. Proposed Method

This section explains in detail the proposed metliod identification of reuse
opportunities. Section 3.1 describes the similaraged process applied by our method
to identify reuse opportunities. Section 3.2 pr@gsosur method and its steps. Finally,
Section 3.3 presents a tool that implements ouhoakt

3.1. Identifying Similarity

Previous work investigate the use of textual sintifain the context of source code
analysis [Tian et al. 2014, Zhen et al. 2008]. €hare many applications for similarity
analysis in software systems, such as comparisdratgcts, spell check, and plagiarism
detection [Liu and Lu 2008]. Our propose methodeulde, takes advantage of source
code and similarity analysis for identification fuse opportunities. As discussed in
Section 2.2, our method uses the static source @aalgsis [Cornelissen et al. 2009] for
identification of reuse opportunities based on gimailarity between names of classes.
We conducted amd hoc literature review in order to select algorithmstth

compute similarity between strings to be used by method. For this purpose, we
searched for the most popular similarity computaatgorithms to find the one that fits
our study purpose. After the literature review, setected the Levenshtein’s algorithm
[Yujian and Bo 2007]. This algorithm is a similgritunction used by our method to
compute lexical similarity between names of clagses different systems. In short
terms, given two stringé&\ and B, the algorithm computes the number of changes
required to turrA into B.

To identify similarly named classes, we adoptethr@shold of 75% for the
minimum similarity between two names of entitiefieTauthors of this study derived
empirically such threshold because some well-kneaming conventions for classes
may lead to similarly named entities that cleadpresent different purposes. As an
example, we obtain a similarity of 72% for the slamamesCostumer and
CostumerDAO, observed by the authors as frequent names adedas e-commerce
systems. However, we intuitively expect that twasskes with these names implement
different functions, since DAO classes implemertabdase persistence.

Table 1 presents some examples of class namdab@nespective similarity rate
using the chosen algorithm. We checked each clasenn the table to identify typos.
As a result, we observed that they corresponddé@iact terms identified by JReuse. In
Table 1, we present eight matches between nandassies from two software systems:
SystemA and SystenB. Each match has at least 75% of similarity ratevben names
of classes, in accordance to our empirical threshHgbte that our threshold covers, for
instance, names of classes that vary from singtdamplural (e.g.,Client and
Clients).

3.2. Proposed Method and Its Steps

A software domain is a set of systems that shaowmamon set of functionalities,
requirements, or terminology [Neighbors 1992, Rress 2005]. Therefore, we expect
that software systems within the same domain ptdseical similarity with respect to

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 1. Examples of similarity computation

System A System B Similarity Rate
ShoppngCart ShoppCart 75%
OrderProdud d OrderProduc 78%
Orderservie Orderservi 83%
Reviwes Reviwe 85%
Clients Client 85%
CartControlér CartControll 85%
Producs Product 87%
ProductController ProductController 94%

the names of classes. In this context, similarlgn@ad classes may contribute to the
comprehension of the characteristics of systemsnf@ given business domain
[Cybulski and Reed 2000].

Considering this scenario, our study proposes s&eumethod for identification
of reuse opportunities from software systems. Oathd is based on naming lexical
similarity of classes. Given a set of software eyst from the same domain, JReuse
compares names of classes, in pairs, to identifynacon names among different
systems. We believe that recurring names of classgsindicate reuse opportunities in
a given domain. Furthermore, frequent names ofseksmay indicate common
behaviors and requirements of these entities [GWbaind Reed 2000].

In general, similarity rate is not enough for éleg a class as a possible reuse
opportunity [Ye and Fischer 2005]. We then consitierclasses that are more frequent
among the systems for recommendation. Note thatn&ance, a name of class with
matches in 10 different systems is more frequean # name of class that matches in
only 2 systems. Figure 1 illustrates the comparibetween classes performed by
JReuse. We provide a description of this processliasvs.

1 2 n
array[l..n] Class, Class, Class, 4 Class,,
i-1 > - i—-n-1
3= -1 > j =n

Figure 1. Steps to identify common classes

Considerarray[1..n] an array of names of classes and two pointefs,
.., n-1} andj = {2, .., n} . For eachi, we comparearray]i] with
array[j] for j = {i+1, .., n} . If arrayfi] Is similar toarrayf[j] with a
minimum similarity rate of 75%, then the methodiségys a reuse opportunity. JReuse
compares all classes from the set of systems tatifgehe similarly named classes.
Since our method relies on lexical analysis, wendb perform synonymous analysis.
Therefore, we say that classes suchChent and Customer , that may be similar
semantically, are different entities in the sowocde.

Figure 2 presents the five steps performed byud&eto identify reuse
opportunities in a set of systems. We describe steghas follows.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

® @ ® @

. Compute Sort reuse
@ —— | Extract classes |——| similarity for |——| opportunities by |——

1 5a) class frequency

Several Systems Entities Repository

Figure 2. Steps of the JReuse method

1. First, the JReuse method receives, as input, sadtegstems from a data set
provided by the user. These systems are supposeldng to the same domain.
Then, the method filters non-Java source filescalids every system projects
that are for the Android platform, and extracts tizmes of classes from the
Java source files.

2. After, the method extracts the names of classeotapute the similarity rates
between pairs of classes from the systems. We igighthat JReuse does not
compare names of classes from the same softwamearsys

3. Then, JReuse compares the names of classes intpagentify names with at
least 75% of similarity. Classes with similar napesdled matches, are gathered
and each class name receives a score that is thieenwf systems in which the
class occurs. The higher the score, the more neleway be the class regarding
the analyzed domain.

4. After comparing names of classes and computinglaiity, JReuse sorts the
obtained results, in decreasing order, by the #aqy of the identified reuse
opportunities.

5. Finally, JReuse composes a repository of candidatesuse opportunities with
the identified classes. This repository may supp@telopers in using such
reuse opportunities to implement new systems oattetyzed domain.

3.3. Tool Support

To automate the proposed method, we developed tatype tool that implements
JReuse for Java software systems. We selectedb&maase (i) it is one of the most
popular programming languade§i) there is an available Java parser to supgoutce
code analysis by the generation of an AbstractéBytee (AST), and (iii) many studies
have been investigating software reuse in Javamgst Through the Java parser, we
may access the source code structure, Javadogcamehents, for instance. It is also
possible to change the AST nodes or create new tone®dify the source code. We
also used the Eclipse Java Development Tools (pafSer to support the identification
of similarly named classes.

The supporting tool performs three steps to idgnguse opportunities. We
describe each step as follows.

1. First, the tool retrieves the name of all classemfa software system data set.
This step is important to support the similarityngutation among classes from
different systems.

2 http://spectrum.ieee.org/static/interactive-the-psogramming-languages-2015

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

2. After, the tool compares the names of classesairspto identify class hames
with at least 75% of similarity. Classes with s@nihame, that is, matches, are
gathered and each class name receives a scorns thatnumber of systems in
which the class occurs. The higher a score, thee malevant may be the class
with respect to the analyzed domain.

3. Finally, the tool persists the classes identifiedd aextracted as reuse
opportunities in a database.

JReuse provides an abstraction for the desigmaa@on of a system given a
domain. In other words, the developers may useréhee opportunities identified by
JReuse to compose a partial design for any systatrbelongs to the analyzed domain
in terms of frequent classes. For this purposetdbé provides output as a CSV file.
Each line of the file contains (i) the name of assl identified as reuse opportunity and
(ii) the absolute path of the class. JReuse sbeoutput file, in decreasing order, by
the frequency of the identified reuse opportunities

4. Evaluation Settings

This section describes an empirical evaluatiorhefrhethod proposed in Section 3. For
this purpose, we designed an exploratory study wcted in environment controlled

based on guidelines of Wohlin et al. (2012). SidBeuse aims to identify the main
reuse opportunities from software systems, ouruatgn consists of analyzing the
reuse opportunities identified by the proposed wakth

Section 4.1 presents the study goal and reseaes$tigns designed to guide our
study. Section 4.2 describes the steps to evatuatenethod through a prototype tool.
Section 4.3 discusses the steps for collectingdhget systems from GitHub. Section
4.4 describes the exclusion criteria to composefitied set of systems for analysis.
Section 4.5 presents the strategy adopted by JReusempute the similarity between
classes. Finally, Section 4.6 presents the datasset to evaluate the JReuse method.

4.1. Goal and Resear ch Questions

In this study, our goal is to assess whether JRisusge to identify frequent classes in a
specific software domain. We are also interesteaksessing the relevance of the results
provided by our method. For this purpose, we ctliose domains to evaluate, namely
accounting, restaurant, hospital, and e-commerce. al¢o0 designed the following
research questions (RQs) to guide our study.

RQ1. What are the most frequent classes in software systems for each selected domain?

Through RQ1, we are interested in investigatingetiver the most frequent
identified classes are useful as recommendatiansofiware systems for the respective
domain. We expect that JReuse is able to providdista of classes whose
recommendations for reuse are relevant for thesgtse domains.

RQ2. How distributed are the most frequent classes through systems per domain?

With RQ2, we aim to understand to what extentstiime class, identified as one
of the most frequent classes, occur in differeffitwsre systems from a given domain.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

For instance, we aim to understand if the same nafnotass can occur in all analyzed
systems, or in most of them.

4.2. Evaluation Steps

To evaluate JReuse in identifying reuse opportesitive chose systems from domains
of accounting, restaurant, hospital, and e-commeiée chose such domains for the
following reasons. First, software systems fromséhdomains encompass several basic
business features, such as user and product maeagesecond, there is a significant
number of systems, per domain, available for doashlan GitHub. Third, from the
perspective of the authors of this study, the fouwsen domains are well-defined in
terms of requirements and, therefore, we belieaeithmight be possible to find several
reuse opportunities among systems of these domains.

We extracted the systems that compose our datmosetGitHub repositories.
We performed the selection of systems for the emerne domain in January 2015 and
in May 2016 for the other domains. We selected dbfware systems based on the
ranking of starred systems and system length mgdeaf storage space. In GitHub, stars
are a meaningful measure for repository populatong the platform users, and may
support the selection of relevant systems for study

Figure 3 presents the three study steps we fotlowe investigate the two
research questions described in Section 4.1. Whbssteps as follows.

’—> Step 1 Step 2 Step 3

Class
— — L — —

GitHub 400 systems 72 systems Classes

Figure 3. Steps of the exploratory study

Sep 1. Automated Search. This step consists of colleting a set of softwayrgems from
GitHub for analysis (see Section 4.3).

Sep 2. Exclusion Criteria. This step is a filtering of the collected systemisning to
discard the inappropriate systems for analysis $&=tion 4.4.).

Sep 3: Class Name Smilarity. This step consists of running JReuse to idettigyreuse
opportunities in class-level (see Section 4.5).

4.3 Automated Search

In order to clone automatically several systemsnfrGitHub, we needed to define
appropriate search strings per domain since tlseeediverse terminology to represent
the same software domain. For instance, we may teféhe e-commerce domain as
ecommerce, without hyphenation. Thus, to collect the sofvalystems that compose
our data set, we developed an algorithm to clorklui repositories individually, with
the respective systems, based on a specific setamoh per analyzed domain. Since the
goal of our study is to identify reuse opporturstigom different software systems,
given large system sets per domain, we definedehech strings presented in Table 2.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 2. Search string per domain

Domain Search String
Accountancy Accountancy OR Accounting
Restaurant Restaurant OR Eatery OR Restaurants
Hospital Hospital OR Infirmary OR Lazaretto
E-Commerce E-Commerce OR Ecommerce OR Electronic Commerce

4.4 Exclusion Criteria

We did a rigorous and transparent selection ofténget systems, and attempted to
minimize the risk of bias due to process of minddpmjects from GitHub to a
minimum by applying strict exclusion criteria. Tab3 presents the exclusion criteria
applied in the selected systems. We collected 40@ 3ystems from GitHub, 100 for
each domain in order descending sorted by starsthéfediscarded systems according
to the four following exclusion criteria.

Table 3. Exclusion criteria applied to the data set

Domain Discarded Sys_tems per Exclusion Criteria _ Selected

Non-Java Android <1KLOC Not English System

Accounting 12 17 51 9 11

Restaurant 4 27 53 3 13

Hospital 7 24 40 16 13

E-Commerce 21 3 20 21 35
All 44 71 164 49 72

First, non-Java software systems, since GitHulmaloverify automatically the
main programming languages of the systems. Secdsnh projects developed for
Android platform, because Android systems tendateeha different architectural design
and code implementation when compared with tragitidava systems. Third, systems
with less than 1,000 lines of code (LOC). Fourtystams written in other languages
rather than English, since our method relies oex&cél similarity technique and, then,
natural language may affect significantly the ressptovided by our method.

4.5. Class Name Similarity

From each selected domain as described in theque\steps, we performed analysis
through JReuse. To identify and extract reuse dppities, we executed the tool that
provides support the developed method for 72 catesoftware systems from GitHub.
These systems were submitted to JReuse for extnaofi reuse opportunities. JReuse
compares the names of classes in pairs to idemdifyes with at least 75% of similarity.
Classes with similar names, called matches, ateegad and each class name receives a
score that is the number of systems in which thescbccurs. The higher the score, the
more relevant may be the class regarding the asdlgomain. After the automated
analysis for each domain, JReuse provided a ligt wie most frequent classes that
occur in the domain.

4.6 Data Set

The systems that compose our data set were ralrieomn GitHub. For each selected
system, we considered only the last release. Ttosegs was necessary to discard
different versions of the same system, which probabntain several classes with
similar names. Finally, we obtained 72 Java systéonsevaluation of the JReuse

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

method, as indicated in Table 4.To better charaetesystems in the four domains,
Figures 4 and 5 presents software metrics for sysger domain: LOC and number of
classes (NOC), respectively. We plotted twelve lbatsp one for each metric. However,
because of the heterogeneity of the sample of ata det, we decided to eliminate
“outliers” for each metric. Therefore, all boxplgtsesented a brief overview of each
analyzed domain.

Let us consider Figure 4 in the following analysfsLOC. In this figure, we
represent the mean of each distribution with “X&able 4 provides addition descriptive
data, i.e. the data that compose the boxplots fFogure 4. With respect to the
accounting domain, we observe that the mean of UH@GCthe systems is 8,690.
Moreover, the median is 5,112, i.e., half of thecamting systems has at least 4 KLOC.
That is, a significant number for analysis and tdieation of reuse opportunities.

= 7000 =
4 6000 : :
8000 .

6000 : 40000

| 5000 — |
6000 —] 5000 — x

30000 —

4000 | 4000 -

4000 — X 20000 —
3000 3000 —_

2000 2000] 2000 . A ;

1000 -
(a) Accounting (b) Restaurant (c) Hospital (d) E-commerce

Figure 4. LOC of the systems per domain

Table 4. Descriptive analysis of LOC per domain

Domain 1% Quantile M edian 3% Quantile M ean Std. Dev.
Accounting 3,112 5,112 6,229 8,690 11,952.08
Restaurant 2,187 3,256 4,519 3,447 1,527.15
Hospital 1,700 2,534 5,346 4,964 6,223.94
E-Commerce 1,805 3,730 8,691 46,100 107,045.3

Regarding the restaurant domain, the mean of L©G,447. In addition, the
median is 3,256. Again, we conclude that theseesysthave a significant LOC for
analysis. For the hospital domain, the mean is#4&& the median is 2,534 of LOC.
Although these values are smaller than the obtausddes for the other domains, it
remains significant for the study. Finally, withspect to the e-commerce domain, we
observe a mean LOC of 46,100 and a median of 3n3@eneral, systems from this
domain have the highest numbers of LOC and, thexefbey may have several reuse
opportunities.

With respect to the following analysis of NOC, smler Figure 5. In this figure,
we represent the mean of each distribution with .“Xable 5 provides addition
descriptive data, i.e. the data that compose thx@lbts from Figure 5. Regarding the
accounting domain, note that the mean of NOC ferdystems is 35.73. Furthermore,
the median is 18, i.e., half of the accountingayst has at least 18 classes. This number
Is significant for analysis because we are intecest finding similarly named classes
within a pairwise comparison. Therefore, we exgecomparison of 18 * 18 = 324 pairs
that may be reuse opportunities.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

50 1 60 == — 400
! 80 ! =

40 30 300

30 - i -

200

30 — 40
20 — . X
20
10 — - -

100 —

20 1

10 —

O =y
(a) Accounting (b) Restaurant (c) Hospital (d) E-commerce
Figure 5. NOC of the systems per domain

Table 5. Descriptive analysis of NOC per domain

Domain 1% Quantile M edian 3% Quantile M ean Std. Dev.
Accounting 9.5 18 32 35.73 48.01
Restaurant 26 40 45 37.23 14.35

Hospital 18 25 46 33.85 24.19

E-Commerce 26 45.5 100.2 368 819.72

Regarding the restaurant domain, the mean of N©B7i23. In addition, the
median is 40. Again, we conclude that these systhave a significant NOC for
analysis. For the hospital domain, the mean is32a&d the median is 25 of NOC.
Finally, with respect to the e-commerce domain,olvserve a mean NOC of 368.9 and
a median of 45.5. In general, systems from thisalorhas the highest numbers of NOC
and, therefore, there is a significant possibditydentifying reuse opportunities.

5. Results and Discussion

In this section, we present and discuss the maultseof our empirical evaluation with
JReuse. Section 5.1 presents the most frequesesladentified by JReuse per domain.
Section 5.2 focus on the distribution of the mosgfient classes through the systems of
each domain. Finally, Section 5.3 provides an aegnand discusses lessons learned.

5.1 Frequent Classes per Domain

In a first moment, we present the results regardimg most frequent classes per
analyzed domain. Therefore, we answer RQ1 as fsllow

RQL1. What are the most frequent classes in software systems for each selected domain?

In this study, we analyzed the frequency of sirhyjlanamed classes for the
systems of each domain. Table 6 presents softwateasifor systems per domain: lines
of code (LOC) and number of classes (NOC). Thisetahtegorizes NOC in two types:
(i) analyzed, i.e., the number of entities analyagdhe tool and (ii) recommended, that
is, entities identified by the tool as reuse oppaittes. In general, from Table 6 we
observe that JReuse identified good results asidated for reuse opportunities. For
instance, for domain e-commerce, JReuse idenfifiedasses as reuse opportunities.

In order to present and discuss the most frequkasses extracted as reuse
opportunities, we considered the following exclusioriteria of classes. For each
domain, we discarded classes that occur in a maximf two different systems.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 6. Software metrics computed for the systems per domain

Domain Number of LOC Number of Classes
Systems Analyzed Recommended
Accounting 11 95,588 493 25
Restaurant 13 44,813 484 17
Hospital 13 65,297 446 21
E-Commerce 35 1,567,337 12,598 75

We made this decision because our method compkasses in pairs and, then, three
occurrences may not be significant to a reuse rezamdation. To validate the lists of
most frequent classes per domain, we submitted Isgtshto a group of experts in the e-
commerce domain (also called domain experts). Bofiware engineers of a Software
Engineering laboratory compose this group of expéfhe group was responsible for
analyzing the relevance of the results provided®guse in the context of each domain.

Tables 7, 8, 9, and 10 present classes ident#gedeuse opportunities for e-
commerce, accounting, restaurant, and hospitapeotisely. We selected only the
classes with at least 15%f occurrence in the systems of the respectiveaiionEach
table has a “Domain-Specific” field. This field iedtes the viewpoint of the domain
experts regarding a given class to be specifictieranalyzed domain. We use three
symbols to represent the domain experts viewpainthe tables. The () symbol
indicates that the domain experts agreed that s ¢s specific for the domain under
analysis. The (X) symbol indicates that the doneiperts disagreed that the class is
indicated for the domain. Finally, a blank fielde(i Unconfirmed) indicates that the
domain experts did not converge to a specific @piran the class. Moreover, each table
has a “Labels” filed to inform the level of relexanof the class identified by JReuse as
reuse opportunity.

Scale to Indicate the Level of Relevance of the Entities Identified. To support the
identification of the most recommended classesswh domain, we defined scales to
represent levels of recommendation for the clasBlesse scales rely on the frequency
of the classes identified as reuse opportunity. Weak label (from 0% to <50%)
indicates that the class is weakly or moderatetpmanended as a reuse opportunity
given a domain. In turn, the strong label (from 5@»400%) indicates that the class is
highly recommended as a reuse opportunity.

Table 7 presents results with respect to the adogyudomain. In our analysis,
we discarded 161 classes because they presengethées 15% of frequency among
systems. For this domain, the classes fisers to TransactionManager belong to
the strong label and, therefore, they are the higftommended classes for accounting
systems. On the other hand, the domain expertalicconsider the classessers
DatabaseConnection , andUtil as specific classes for the accounting domain. In
addition, the classes fromddFinancialsAction to RawMaterial belong to the
weak label. The remainder classes have exactlyamtiree occurrences in different
systems from the accounting domain. Therefore, #reyweakly recommended and
were omitted from this table.

3 The percentage depends on the number of systeties analysis given a domain

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Table 7. Classes with at least 15% of occurrences in the accounting domain

L abel Class Frequency % of Systems Domain Specific
Users 13 100% X
DatabaseConnection 13 100% X
CashFlow 11 85% v
util 10 7% X
BalancesAssets 9 69% v
CashBanks 9 69% v
ShareholderEquity 9 69% v
BalancesLiabilities 8 62% v

Strong ChartAccounts 8 62% v
AccountingMovement 8 62% v
AccountsReceivable 8 62% v
AccountsPayable 6 46% v
Transactions 7 54% v
Log 7 54% X
FinancialReportsPoeHelper 7 54% X
InventoryManager 7 54% v
TransactionManager 7 54% v
AddFinancialsAction 6 46% v

Weak Accounts 6 46% v
FeaturesAnalysis 6 46% v
RawMaterial 6 46% v

Key: Agree (X), Disagree¥), and Unconfirmed (blank field)

Table 8 presents results for the restaurant dariféendiscarded 13 classes since
they presented less than 15% of frequency amortigregs The classésgin andUser
belong to the strong label. From the domain exp@dw/point, these classes are not
specific classes in the domain. However, they alevant in restaurant systems. The
classes fromClient to Order belong to the strong label and are relevant fer th
restaurant domain from the domain experts viewpdiote that, for many of the classes
identified by JReuse, the experts considered sladses as relevant reuse opportunities
for restaurant systems, even in the weak labeh ss®estaurantMenu , Delivery
andCustomer .

Table 8. Classes with at least 15% of occurrences in the restaurant domain

L abel Class Frequency % of Systems Domain Specific
Login 10 77% X
User 10 7% X
ConnectionManager 9 70% X
Client 9 70% v

Strong Table 8 62% v
PaymentType 8 62% v
Dish 8 62% v
Employee 7 54% v
Order 7 54% v
RestaurantMenu 6 47% v
Delivery 6 47% v

Weak ItemOrdered 6 47% v
Customer 4 31% v

Key: Agree (X), Disagree¥), and Unconfirmed (blank field)

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Consider Table 9 for analysis of the hospital dom®#e discarded a set of 25
classes because they have occurred in less thanoil%8e systems. Observe that the
classes fronPatient to Microbiology ~ belong to the strong label and, therefore, they
are highly recommended classes as reuse oppoesiitote that, from the viewpoint of
the domain experts, the three most frequent clemsespecific from hospital systems.
In fact, classes such Ratient andDoctor are meaningful in the domain. In addition,
classes fromPatientCondition to OperationsWithCards are from the weak
label. Finally, the remainder classes have less th8% of the occurrences.

Table 9. Classes with at least 15% of occurrences in the hospital domain

L abel Class Frequency % of Systems Domain Specific
Patient 13 100% v
Doctor 13 100% v
Disease 11 85% v
User 10 7% X
Login 9 69% X
Diagnose 9 69% v
Symptoms 9 69% v

Strong PatientDisease 8 62% v
HealthPlan 8 62% v
Immunology 8 62% v
Haematology 8 62% v
Medication 7 54% v
Surgery 7 54% v
MedicalRecords 7 54% v
TypePayment 7 54%
Microbiology 7 54% v
PatientCondition 6 46% v
LaboratoryExams 6 46% v
Log 6 46% X
HistoPathology 6 46% v

weak Connection 6 46% X
Paycash 5 38%
util 5 38% X
OperationsWithCards 3 23%

Key: Agree (X), Disagree¥), and Unconfirmed (blank field)

Finally, consider Table 10 for the analysis andcdssion regarding the e-
commerce domain. For this domain, we discarded B3@dsses because they were
present in less than 15% of the analyzed systerote that the classé&oduct to
ClientDao belong to the strong label. That is, they are lgiglcommended classes for
e-commerce systems, because they were present ri@ timan 50% of the analyzed
systems. In addition, the classksm to ShoppingCartService are the weakly
recommended classes. As aforementioned, we ontiteedlasses with less than 15% of
the occurrences.

In general, we observed that the classes idedtlfy JReuse are relevant to their
respective system domains, from the viewpoint ef domain experts. Although some
classes in the weak label are considered relevaost of the group agreement was
related to classes in the strong label. Therefmredata suggests that our method is able

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

to identify interesting candidates to reuse. We thiee able to assess how distributed are
such classes among different systems from the samein.

Table 10. Classes with at least 15% of occurrences in the e-commerce domain

L abel Class Frequency % of Systems Domain Specific
Product 28 80% v
PaymentType 24 69% v

Strong Client 20 58% v
ProductDao 18 52% v
ClientDao 18 52% v
Iltem 17 49% v
ShoppingCart 17 49% v
User 17 49% X
Customer 14 40% v
Category 12 35% v
ProductService 10 29% v

Weak Order 9 26% v
LoginController 7 20% X
UserDao 6 18% v
ProductServicelmpl 6 18% v
ShoppingCartController 6 18% v
OrderedProduct 5 15% v
ShoppingCartService 5 15% v

Key: Agree (X), Disagree¥), and Unconfirmed (blank field)

5.2 Distribution of Frequent Classes

After presenting the most frequent classes frontesys of each system domain under
analysis, we present the results with respect & distribution of classes through
systems from the same domain. Therefore, we arR@2as follows.

RQ2. How distributed are the most frequent classes through systems per domain?

Figure 6 presents the top-ten most frequent cdaiksethe accounting domain,
based on the number of occurrences for each Gas$ classes are, in decreasing order
of frequency,Users , DatabaseConnection , CashFlow , Util , BalancesAssets
CashBanks , ShareholderEquity , BalancesLiabilities , ChartAccounts , and
AccountingMovement . We observe that, although orashFlow is specific to the
given domain from the viewpoint of the domain expeall classes from this label are
meaningful in accounting systems.

Regarding the restaurant domain analysis, Figupee3ents the top-ten classes
with the highest occurrences, namebgin , User , ConnectionManager , Client
Table , PaymentType , Dish , Employee , Order , and RestaurantMenu . These
classes have a high to medium level for recommemdatccording to our scale defined
in Section 5.1. The classes with the highest oecwes in this domain ategin and
User, respectively. Both classes were present in 77%hefanalyzed information
systems. Nevertheless, they are not specific das$erestaurant systems. In turn,
JReuse was able to identify several frequent ctassech asClient , Table |,
PaymentType , andDish .

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

100% g
90% 82%
80% 3% 13%
70% 64% 64%
60% 5% 5% SS% 55%
50%
40%
300/0
20%
10%
0%
\\)

>
9
=
D
=
=3
@
L=
=
; & S SRS & N
() O Q Q 3 N ™ <
S X0 A 9 q, N A N
R s §F K & &
C/OQ (e QQ O’b% \B@ %\)\ \ad @Q
0 N o 8] 3 o~
& P J & C S
RS % & NG S
& P &
Q 5%
v
Classes

Figure 6. Distribution of frequent classes through accounting systems

100%
90% 86%

80%
80% 74%
70% 63%
60% 51% 51%
0 0 90/
50%
43%

409 °
0 3% 5.
30%
20%
10%
0%

o (\

Frequency

o @& o & & &
© \@ c!* o &AQ @ L i Q\@ & 0®
Q\ obo' Z/Q OQ?" 0{\\6
A @*& & %‘@Q
Classes

Figure 7. Distribution of frequent classes through restaurant systems

Figure 8 presents the most frequent classes faehtor the hospital domain, in
decreasing order of frequency. For the 13 systemscollected from this domain,
JReuse extracted some relevant entities, suchatisnt , Doctor , and Disease ,
from the domain experts agreement. The classeemsgsin this figure belong to the
strong label. Note that the class&gient andDoctor were present in 100% of the
evaluated systems. Similarly, to the other domalRguse identified some classes that
are generic, i.e. classes expected in systemsdtber domains, such &ser (77%).

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

100% 100% 1QQ%

90% 85%
80% 77%
70% 69% 69% 69%
62% 62% 02%
60%
50%
> 40%
2
g 30%
=
2 20%
=
10%
0%
X & 2 ; o Q
& oc,\o A%@fz? \5‘5‘ \0%* Q @ _%e?% \§\‘° o\o"o
Q7 Q N Q&% A&Q (\9\ Q‘Zr\\ &
° sz;& < x@&
Classes

Figure 8. Distribution of frequent classes through hospital systems

Finally, Figure 9 presents the top-ten most fretugdasses for e-commerce
systems. We sorted the classes in decreasing ofdeequency. The most frequent
entities are, respectivelproduct , PaymentType , Client , ProductDao ,
ClientDao , Item , ShoppingCart , User, Customer , and Category . Note that,
according to the domain experts the clasBesiuct , Payment, ShoppingCart
Customer , andClient are elementary entities, i.e. we expect them ie-anmmerce
system. In turn, althouglser is one of the most frequent classes identifiedRguse
(49% of the systems contain this clagfer is not specific of the e-commerce domain.
However, this class is meaningful for informatigstems in general.

100%

90% 86%
80%
80% 74%
70% 63%
60% 51% 51%
o 0 9%
50%
43%
> 0 o
E 40% 34% 3104
= 30%
g
= 20%
10%
0%
o o 5 5
& @ & af & &
@ v &S é@\ & &30 Q\\ NS
&Qb .@e C/o \0& QQ\
RN S
Classes

Figure 9. Distribution of frequent classes through e-commerce systems

5.3 LessonsLearned

In this study, we learned a lot regarding interegtiesearch topics such as software
reuse, reuse opportunities identification, and meoe@ndation systems. For this propose,

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

we take as an example the e-commerce domain, efipdxy the popularity and size of
these systems on GitHub. We discuss some of the i@sgons learned with support of
the following questions.

How much a lexical analysis may support the identification of reuse opportunities

assets? As discussed in Section 2, there are many appesachsupport software reuse
in literature. Lexical analysis is a simple one.wéwer, as pointed by the results of
Section 5, it may be effective to identify reusepounities in systems from a single
domain. Moreover, we initially conceived our methodyather classes with names that
are semantically similar. However, through our gtu@ identified some occurrences of
similar entities in an intuitive fashion that dotmepresent the same real-world concept.

In our exploratory study, which was conducted icoatrolled environment (see
Section 4), we found for instance, frequent classes alient andCostumer have
distinct behaviors although intuitively they repet the same real-world abstraction.
Some classes named @tent implement a simplistic system client, which regist
data. In turnCostumer classes generally implement system clients witlmemrobust
features, such as data management. Therefore, welude that lexical analysis
performs satisfactorily to identify reuse opportigs at least in this domain.

Are names of classes suitable to the entities they represent in a business domain? We
discuss in Section 3.2 that names of classes maysbtil for reuse opportunities
identification. In fact, we observed that namingigarity identification might support
reuse opportunities identification. However, taisste similarly named classes may be
uninteresting if they are not representative ipecg#fic domain. Section 5 highlights the
identified classes that fit to e-commerce domainese entities are the most frequent
that our tool detected.

Therefore, we believe that names of entities ame,general, sufficiently
representative. Moreover, we observed in this sthdy our method is able to identify
reuse opportunities in randomly mined systems f@itHub, provided by different
development teams. Therefore, we expect to ob&sunlts that are even more relevant
in the context of a specific organization.

How to apply our reuse opportunities identification tool in a reuse recommendation
system? Classes are elementary entities of object-oriestdtivare systems. Knowing
this type of source code entities, we are ableescdbe the architecture of a system.
Therefore, with results provided by our tool, wee san opportunity for reuse
recommendation through software modeling usingsatkagrams, for instance.

To the best of our knowledge, we have not foundhym@cent studies with
respect to reuse opportunities identification, sufgdl by tools for this activity, and
methods to support the building of reuse repogsowith similar approach. Therefore,
as an interesting research topic, we lack moretgatve data to measure and compare
different techniques that support software reuse.

6. Threatsto Validity

We based our study on related work to support trethod definition and the
development of the supporting tool, both calleduld®e Regarding the evaluation of our
method and tool, we conducted a careful empiritadysto assess effectiveness of the

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

method in identifying reuse opportunities. Howesenme threats to validity may affect
our research findings. We discuss the main thi@adsrespective treatments as follows,
based on the categories presented by Wohlin €@il2).

Construct Validity. Before running our reuse opportunities identifmatmethod, we
conducted a careful filtering of information systenfrom GitHub repositories.
However, some threats may affect the correct ifiiteof systems, such as human factors
that wrongly lead to discard a valid system forleation. Considering the exclusion
criteria for selection of systems (see Section,4® implemented an algorithm to
automate this process and, then, discard inapptepsystems for analysis. However,
we may have discarded relevant software systemsisbyg our algorithm, such as
systems misidentified as non-Java systems.

Internal Validity. We conducted a lexical classification of entitteat are prone to
some threats. To treat this possible problem, viecwsl a sample of 10 e-commerce
systems from our data set, with diversified numbgrentities. Then, we manually
identified the names of entities from source caméirntd synonyms. We compared our
manual results with the results provided by thd #wd observed a loss of 10% in
synonym terms identified through the automated ggsc

Conclusion Validity. After running our identify tool, we gathered maltyalasses that
seemed to represent the same real-world objectirfstance, we considered classes
named a<Client and Costumer as the same type of class. However, this process i
subjective and human factors may have affectebh ithis first exploratory study, we
decided for not unifying terms (for instan@ystomer andClient) in the quantitative
analysis.

External Validity. We evaluated our method with a set of 72 systexisacted from
GitHub. Considering that they may not represent filier analyzed domains, our
findings may be not be generalized. Furthermore, evaluated only four system
domains, accounting, restaurant, hospital, and neserce. However, the collected
systems are the most popular on GitHub that isrgela used platform. Finally, we
evaluated systems implemented only in Java progiaghtanguage. Although it is one
of the most popular languages worldwide, our resutiay not generalize to other
programming languages.

7. Conclusion and Future Work

In a previous work, we proposed JReuse, a methatktdify reuse opportunities from
software system of a specific domain. Our methdiégen lexical analysis to compare
names of classes and identify the most frequerg.dneddition, we present a prototype
tool that implements the method for analysis ofalaeftware systems. Finally, we
conduct a preliminary evaluation of our method ws# software systems of the e-
commerce domain, collected from GitHub. Given tinatations of our previous effort
to evaluate the proposed method, this paper extendsarlier contributions with a
more extensive evaluation of JReuse in the comdkkaur different software domains:
accounting, restaurant, hospital, and e-commermetHfs purpose, we analyzed a large
set of 72 Java systems also collected from GitHub.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

We evaluate JReuse through an exploratory studylwtied in a controlled
environment, considering two aspects. First, weesssvhether the most frequent
classes provided by our method are relevant forréspective domains. Second, we
assess the distribution of frequent names of cdaas®ng different systems of the same
domain. Our findings suggest that our method wads tbsuggest relevant classes for
systems from the four analyzed domains. The opimba group of domain experts
reinforces our findings. This group validated oasults and indicated high rates of
agreement with respect to the relevance of theerepportunities provided by JReuse.
In addition, our data suggest that the most frequksses provided as candidates for
reuse were present in a significant number of diffe systems of the respective
analyzed software domains.

As future work, we intend to enhance JReuse togestgsource code to
developers based on the most frequent classesfidéry the proposed method. In
addition, we aim to combine lexical with semanti@lgsis to improve the identification
of reuse opportunities. For instance, the semaatiglysis may support analysis of
synonyms and improve our results of identificatidn. addition, we may explore
alternative techniques for similarity computatioiWe also intend to implement our
method targeting other object-oriented programnanguages.

References

Caldiera, G. and Basili, V. R. (1991). Identifyimgd Qualifying Reusable Software
ComponentslEEE Computer, 24(2):61-70.

Cornelissen, B., Zaidman, A., Van Deursen, A., Magri., and Koschke, R. (2009). A
Systematic Survey of Program Comprehension thrddghamic Analysis.|EEE
Transactions on Software Engineering (TSE), 35(5):684—702.

Cybulski, J. and Reed, K. (2000). Requirements Sifiaation and Reuse: Crossing
Domain Boundaries. IRroceedings of the 6th International Conference on Software
Reuse (ICSR), pages 190-210.

Guo, J. and Lugi (2000). A Survey of Software ReRgpositories. IProceedings of
the 7th International Conference and Workshops on the Engineering of Computer
Based Systems (ECBS), pages 92-100.

Inoue, K., Yokomori, R., Yamamoto, T., Matsushik,, and Kusumoto, S. (2005).
Ranking Significance of Software Components basadUse RelationsIEEE
Transactions on Software Engineering (TSE), 31(3):213-225.

Kawaguchi, S., Garg, P., Matsushita, M., and Inokie,(2006). MUDABIue: An
Automatic Categorization System for Open SourcedRBigpries.Journal of Systems
and Software (JSS), 79(7):939-953.

Koziolek, H., Goldschmidt, T., Gooijer, T., Domif., and Sehestedt, S. (2013).
Experiences from Identifying Software Reuse Opputies by Domain Analysis. In
Proceedings of the 17th International Software Product Line Conference (SPLC),
pages 208-217.

Krueger, C. (1992). Software Reus&M Computing Surveys (CSUR), 24(2):131-183.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Kuhn, A., Ducasse, S., and Girba, T. (2007). Seim&iustering: Identifying Topics in
Source Coddnformation and Software Technology (I1ST), 49(3):230-243.

Lee, J., Kang, K. C., and Kim, S. (2004). A FeatBesed Approach to Product Line
Production Planning. InProceedings of the 3rd International Conference on
Software Product Lines (SPLC), pages 183-196.

Li, J., Zhang, Z., and Yang, H. (2005). A Grid Ottied Approach to Reusing Legacy
Code in ICENI Framework. IProceedings of the 3rd International Conference on
Information Reuse and Integration (IRI), pages 464—469.

Liu, H. and Lu, R. (2008). Word Similarity based am Ensemble Model using Ranking
SVMs. In Proceedings of the International Conference on Web Intelligence and
Intelligent Agent Technology (WM-IAT), pages 283-286.

Maarek, Y., Berry, D., and Kaiser, G. (1991). Ariormation Retrieval Approach for
Automatically Constructing Software LibrarielEEE Transactions on Software
Engineering (TSE), 17(8):800-813.

Mende, T., Koschke, R., and Beckwermert, F. (2088)Evaluation of Code Similarity
Identification for the Grow-and-Prune Modédburnal of Software Maintenance and
Evolution: Research and Practice, 21(2):143-1609.

Michail, A. and Notkin, D. (1999). Assessing Softevd_ibraries by Browsing Similar
Classes, Functions and Relationships. Piroceedings of the 21st International
Conference on Software Engineering (ICSE), pages 463—-472.

Mohagheghi, P. and Conradi, R. (2007). Quality deobivity and Economic Benefits of
Software Reuse: A Review of Industrial Studiesipirical Software Engineering
(ESE), 12(5):471-516.

Monroe, R. and Garlan, D. (1996). Style-Based Rdasé&oftware Architectures. In
Proceedings of the 4th International Conference on Software Reuse (ICSR), pages
84-93.

Morisio, M., Ezran, M., and Tully, C. (2002). Susseand Failure Factors in Software
Reusel EEE Transactions on Software Engineering (TSE), 28(4):340-357

Neighbors, J. (1992). The Evolution from Softwarer@onents to Domain Analysis.
International Journal of Software Engineering and Knowledge Engineering
(IJSEKE), 2(3):325-354.

Oliveira, J. Fernandes, E., Souza, M., and Figdeir&. (2016). A Method Based on
Naming Similarity to Identify Reuse OpportunitieBl Proceedings of the XlI
Brazilian Symposium on Information Systems (SBS).

Oliveira, M., Goncalves, E., and Bacili, K. (200Automatic Identification of Reusable
Software Development Assets: Methodology and ToolProceedings of 5th the
International Conference on Information Reuse and Integration (IRI), pages 461—
466.

Pressman, R. (2005). Software Engineering: A Rracér's Approach. McGraw-Hill
Education.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

Ramler, R., Moser, M., and Pichler, J. (2016). Audbed Static Analysis of Unit Test
Code. InProceedings of the 23rd International Conference on Software Analysis,
Evolution, and Reengineering (SANER), pages 25-28.

Ravichandran, T. and Rothenberger, M. (2003). Sw#twReuse Strategies and
Component Market€Communications of the ACM, 46(8):109-114.

Sojer, M. and Henkel, J. (2011). License Risks fiddhHoc Reuse of Code from the
Internet.Communications of the ACM, 54(12):74-81.

Tian, Y., Lo, D., and Lawall, J. (2014). SEWordSiSoftware-specific word similarity
database. InProceedings of the 36th International Conference on Software
Engineering (ICSE), pages 568-571.

Wang, Z., Xu, X., and Zhan, D. (2005). A SurveyBaofsiness Component Identification
Methods and Related Techniqué#ernational Journal of Information Technology,
2(4):229-238.

Wohlin, C., Runeson, P., Host, M., Ohlsson, M., ke B., and Wesslén, A. (2012).
Experimentation in Software Engineering. SpringeeSice & Business Media.

Ye, Y. and Fischer, G. (2005). Reuse-Conducive Dgveent Environments.
Automated Software Engineering (ASE), 12(2):199-235.

Yujian, L. and Bo, L. (2007). A Normalized Levensint Distance Metric.lEEE
Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 29(6):1091—
1095.

Zhen, Z., Shen, J., and Lu, S. (2008). WCONS: Ato@gy Mapping Approach based
on Word and Context Similarity. IRroceedings of the International Conference on
Web Intelligence and Intelligent Agent Technology (W-1AT), pages 334-338.

OLIVEIRA, J.; FERNANDES, E.; SOUZA, M.; FIGUEIREDO, E.
A Method Based on Naming Similarity to Identify Reu se Opportunities
iSys | Revista Brasileira de Sistemas de Informacéo , Rio de Janeiro, vol. 10, No. 1, pp. 99-121, 2017

