Internet of Things Based on Situation-Awareness for Energy Efficiency
Palabras clave:
Context-awareness, nergy efficiency, pervasive applicationResumen
The reduction of electric energy consumption is considered as one of the main challenges in diverse sectors of the economy. To residential customers, the management of energy consumption can bring significant costs reduction and decreased environmental impact. This work presents a solution based on the use of situation-awareness applied in IOT that helps the users to reduce the consumption of electric energy through its own residence. The practical results obtained in the application of this proposal in a real-live scenario confirmed the option of collecting information directly of electrical appliances and inform the user of their energy expenditures in real-time, allowing the knowledge and the management of their expenses.
Descargas
Citas
Aarts, E., & Wichert, R. (2009). Ambient intelligence. Technology Guide. doi: 10.1007/978-3-540-88546-7_47.
Agência de energia elétrica do Brasil, Aneel. 2008. Agência Nacional de Energia Elétrica. Brasília. http://www.aneel.gov.br . December 2017.
Al-Daraiseh, A., El-Qawasmeh, E., & Shah, N. (2013). A Framework for Energy Monitoring and Management System for Educational Institutions. In IT Convergence and Security (ICITCS), 2013 International Conference on (pp. 1-4). IEEE. doi: 10.1109/ICITCS.2013.6717774
Atmel, C.L.D.; 1995.Book, A. Atmel Corporation,
Caragliu, A., del Bo, C., & Nijkamp, P. (2011). Smart cities in Europe. Journal of Urban Technology. doi: 10.1080/10630732.2011.601117
Chagas, J., Ferraz, C., Alves, A. P., & Carvalho, G. Sensibilidade a contexto na gestão eficiente de energia elétrica. 145-158, 2010
Darby, S. Making it obvious: designing feedback into energy consumption. In Energy efficiency in household appliances and lighting; Springer, 2001; pp. 685–696. doi: 10.1007/978-3-642-56531-1_73
Darby, S. (2006). the Effectiveness of Feedback on Energy Consumption a Review for Defra of the Literature on Metering , Billing and. Environmental Change Institute University of Oxford. doi: 10.4236/ojee.2013.21002.
Ehrhardt-martinez, A. K., & Donnelly, K. a. (2010). Advanced Metering Initiatives and Residential Feedback Programs : A Meta-Review for Household Electricity-Saving Opportunities. Energy.
Etzion, O., & Niblett, P. (2010). Event Processing in Action. Online.
Fischer, C. (2008). Feedback on household electricity consumption: A tool for saving energy? Energy Efficiency.doi: 10.1007/s12053-008-9009-7
Güngör, V. C., Sahin, D., Kocak, T., Ergüt, S., Buccella, C., Cecati, C., & Hancke, G. P. (2011). Smart grid technologies: Communication technologies and standards. IEEE Transactions on Industrial Informatics. doi: 10.1109/TII.2011.2166794
Jain, R. K., Taylor, J. E., & Peschiera, G. (2012). Assessing eco-feedback interface usage and design to drive energy efficiency in buildings. Energy and Buildings. doi: 10.1016/j.enbuild.2011.12.033
Hermsen, S., Frost, J., Renes, R. J., & Kerkhof, P. (2016). Using feedback through digital technology to disrupt and change habitual behavior: a critical review of current literature. Computers in Human Behavior, 57, 61-74. doi: 10.1016/j.chb.2015.12.023
Houde, S., Todd, A., Sudarshan, A., Flora, J. A., & Armel, K. C. (2013). Real-time feedback and electricity consumption: A field experiment assessing the potential for savings and persistence. The Energy Journal, 87-102. doi: 10.5547/01956574.34.1.4
Lam, C. F., DeRue, D. S., Karam, E. P., & Hollenbeck, J. R. (2011). The impact of feedback frequency on learning and task performance: Challenging the “ more is better” assumption. Organizational Behavior and Human Decision Processes. doi: 10.1016/j.obhdp.2011.05.002
Lyytinen, K.; Yoo, Y. Ubiquitous computing. (2002). Communications of the ACM 2002, 45, 63–96.
Machado, A., Maran, V., Augustin, I., Wives, L. K., & de Oliveira, J. P. M. (2017). Reactive, proactive, and extensible situation-awareness in ambient assisted living. Expert Systems with Applications. doi: 10.1016/j.eswa.2017.01.033
Machado, A., Maran, V., Augustin, I., Lima, J. C., Wives, L. K., & de Oliveira, J. P. M. (2016, April). Reasoning on Uncertainty in Smart Environments. In Proceedings of the 18th International Conference on Enterprise Information Systems (pp. 240-250). SCITEPRESS-Science and Technology Publications, Lda. doi: 10.5220/0005866502400250
Machado, A., Lichtnow, D., Pernas, A. M., Wives, L. K., & de Oliveira, J. P. M. (2014, April). A Reactive and Proactive Approach for Ambient Intelligence. In ICEIS (2) (pp. 501-512). doi: 10.5220/0004884205010512
Miorandi, D., Sicari, S., De Pellegrini, F., & Chlamtac, I. (2012). Internet of things: Vision, applications and research challenges. Ad Hoc Networks. doi: 10.1109/JIOT.2015.2498900.
Perera, C., Zaslavsky, A., Christen, P., & Georgakopoulos, D. (2014). Context aware computing for the internet of things: A survey. IEEE communications surveys & tutorials, 16(1), 414-454. doi: 10.1109/SURV.2013.042313.00197
Sadri, F. Ambient intelligence: A survey. ACM Computing Surveys, 2011, 43. doi: 10.1145/1978802.1978815
Razzaque, M. A., Milojevic-Jevric, M., Palade, A., & Clarke, S. (2016). Middleware for internet of things: a survey. IEEE Internet of Things Journal, 3(1), 70-95. doi: 10.1109/JIOT.2015.2498900
Rosa, L. M. F. (2013). Sensorização, fusão sensorial e dispositivos móveis: contribuições para a sustentabilidade de ambientes inteligentes (PhD thesis).
Salber, D., Dey, A. K., & Abowd, G. D. (1999). The Context Toolkit : Aiding the Development of Context-Enabled. CHI ’99 Proceedings of the SIGCHI Conference on Human Factors in Computing Systems. Doi: 10.1145/302979.303126
Shajahan, A. H., & Anand, A. (2013). Data acquisition and control using Arduino-Android platform: Smart plug. In 2013 International Conference on Energy Efficient Technologies for Sustainability, ICEETS 2013. doi: 10.1109/ICEETS.2013.6533389
Schreurs, W.; Hildebrandt, M.; Gasson, M.; Warwick, K. Report on actual and possible profiling techniques in the field of ambient intelligence. Future of Identity in the Information Society (FIDIS) Project Deliverable 510 2005.
Sundmaeker, H., Guillemin, P., Friess, P., & Woelfflé, S. (2010). Vision and challenges for realising the Internet of Things. Cluster of European Research Projects on the Internet of Things, European Commision, 3(3), 34-36. doi: 10.2759/26127
Weiser, M. (1991). The Computer for the 21st Century. Scientific American. Doi: 10.1038/scientificamerican0991-94
Ye, J., Dobson, S., & McKeever, S. (2012). Situation identification techniques in pervasive computing: A review. Pervasive and Mobile Computing. doi: 10.1016/j.pmcj.2011.01.004