Comparando a eficácia na recuperação de questionários: QSMatching vs Vector model vs Fuzzy
Palavras-chave:
Abordagem QSMatching, modelo vetorial, fuzzy, questionário, similaridade, ordenação.Resumo
Elaborar um questionário útil representa uma tarefa importante para a pesquisa descritiva. Perguntas mal elaboradas podem levar a respostas com interpretações sem sentido, sutis ou ingênuas. Portanto, pode ser interessante reutilizar, parcial ou totalmente, questionários já criados com o mesmo propósito. Neste trabalho, comparamos o QSMatching com os modelos vetorial e fuzzy para calcular a similaridade entre questionários e, consequentemente, obter uma ordenação de questionários de acordo com a consulta do usuário. Para verificar a efetividade, foi realizado um experimento comparando as abordagens QSMatching, modelo vetorial e fuzzy. O resultado da análise do experimento mostra que o QSMatching é mais efetivo que outros modelos para recuperação de questionários.Downloads
Referências
Apache lucene. https://lucene.apache.org/. (Accessed: 01-2018), 2018.
T. Anwar and M. Abulaish. Ranking radically influential web forum users. IEEE Transactions on Information Forensics and Security, 10(6):1289–1298, 2015.
Ç. Aslay, N. O’Hare, L. M. Aiello, and A. Jaimes. Competition-based networks for expert finding. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 1033–1036. ACM, 2013
S. Avard, E. Manton, D. English, and J. Walker. The financial knowledge of college freshmen. College Student Journal, 39(2), 2005.
Y. BAEZA and B. Ribeiro-Neto. Modern Information Retrieval-the concepts and technology behind search. Pearson, 2011.
C. Buckley and E. M. Voorhees. Evaluating evaluation measure stability. In Proceedings of the 23rd annual international ACM SIGIR conference on Research and development in information retrieval, pages 33–40. ACM, 2000.
R.-C. Chen, D. Spina, W. B. Croft, M. Sanderson, and F. Scholer. Harnessing semantics for answer sentence retrieval. In Proceedings of the Eighth Workshop on Exploiting Semantic Annotations in Information Retrieval, pages 21–27. ACM, 2015.
R. L. Cilibrasi and P. M. Vitanyi. The google similarity distance. IEEE Transactions on knowledge and data engineering, 19(3), 2007.
D. H. Dalip, M. A. Gonc¸alves, M. Cristo, and P. Calado. Exploiting user feedback to learn to rank answers in q&a forums: a case study with stack overflow. In Proceedings of the 36th international ACM SIGIR conference on Research and development in information retrieval, pages 543–552. ACM, 2013.
A. R. Faulkner. Automated classification of argument stance in student essays: A linguistically motivated approach with an application for supporting argument summarization. PhD thesis, 2014. Copyright - Database copyright ProQuest LLC; ProQuest does not claim copyright in the individual underlying works; last update - 2016-06-05.
A. Grappy, B. Grau, M.-H. Falco, A.-L. Ligozat, I. Robba, and A. Vilnat. Selecting answers to questions from web documents by a robust validation process. In Web Intelligence and Intelligent Agent Technology (WI-IAT), 2011 IEEE/WIC/ACM International Conference on, volume 1, pages 55–62. IEEE, 2011.
E. H. Hovy, L. Gerber, U. Hermjakob, M. Junk, and C.-Y. Lin. Question answering in webclopedia. In TREC, volume 52, pages 53–56, 2000.
J. A. Hoxmeier and C. DiCesare. System response time and user satisfaction: An experimental study of browser-based applications. AMCIS 2000 Proceedings, page 347, 2000.
N. N. Knupfer and H. McLellan. DESCRIPTIVE RESEARCH METHODOLOGIES. In D. H. Jonassen (Ed.), Handbook of research for educational communications and technology (pp. 1196 - 1212). New York: Macmillan, 1996.
C. R. Kothari. Research methodology: Methods and techniques. New Age International, 2004.
E. M. Lakatos and M. d. A. Marconi. Fundamentos da metodologia cient´ıfica. In Fundamentos da metodologia cient´ıfica. Altas, 2010.
S. L. Lo, R. Chiong, and D. Cornforth. Ranking of high-value social audiences on twitter. Decision Support Systems, 85:34–48, 2016.
C. D. Manning and H. Schu¨tze. Foundations of Statistical Natural Language Processing. MIT Press, Cambridge, MA, USA, 1999.
M. L. Patten. Questionnaire research: A practical guide. Routledge, 2016.
C. F. Picard. Graphs and questionnaires, volume 32. Elsevier, 1980. 21. B. Pôssas, N. Ziviani, W. Meira Jr, and B. Ribeiro-Neto. Set-based vector model: An efficient approach for correlation-based ranking. ACM Transactions on Information Systems (TOIS), 23(4):397–429, 2005.
P. B. Sheatsley, P. H. Rossi, J. D. Wright, and A. B. Anderson. Questionnaire construction and item writing. In Rossi, P.H., Wright, J.D. and Andersen, A.B. (eds) Handbook of Survey Reseach. New York: Academic Press, pp. 195-230., 1983.
W. Song, M. Feng, N. Gu, and L. Wenyin. Question similarity calculation for faq answering. In Semantics, Knowledge and Grid, Third International Conference on, pages 298–301. IEEE, 2007.
R. H. d. Souza and C. F. Dorneles. Analisando a efica´cia do modelo vetorial de busca na ordenac¸a˜o de questiona´rios. XIII Simpo´sio Brasileiro de Sistemas de Informa¸ca˜o, June 2017.
R. H. d. Souza and C. F. Dorneles. Qsmatching: an approach to calculate similarity between questionnaires. The 19th International Conference on Information Integration and Web-based Applications & Services. Short paper, Dec. 2017.
R. H. d. Souza and C. F. Dorneles. Qsmatching vs vector model: comparing effectiveness in questionnaires retrieval. XIV Simpo´sio Brasileiro de Sistemas de Informa¸ca˜o, June 2018.
S. Vieira. Como elaborar questiona´rios. Atlas, 2009.
L. M. Villar, A. J. d. Almeida, M. C. A. d. Lima, J. L. V. d. Almeida, L. F. B. d. Souza, and V. S. d. Paula. A percepc¸a˜o ambiental entre os habitantes da regia˜o noroeste do estado do rio de janeiro. E. Anna Nery Revista Enfermagem, 12(2):285–290, 2008.
R. S. Waslawick. Metodologia de pesquisa para ciˆencia da computa¸c˜ao. Elsevier, Rio de Janeiro, 2014.
C. J. Willmott and K. Matsuura. Advantages of the mean absolute error (mae) over the root mean square error (rmse) in assessing average model performance. Climate research, 30(1):79–82, 2005.
M.-M. G. Wilson, D. R. Thomas, L. Z. Rubenstein, J. T. Chibnall, S. Anderson, A. Baxi, M. R. Diebold, and J. E. Morley. Appetite assessment: simple appetite questionnaire predicts weight loss in community-dwelling adults and nursing home residents. The American journal of clinical nutrition, 82(5):1074–1081, 2005.
Witten and D. Milne. An effective, low-cost measure of semantic relatedness obtained from wikipedia links. In Proceeding of AAAI Workshop on Wikipedia and Artificial Intelligence: an Evolvin.