Artificial neural network applied in the analysis of health-related quality of life of adolescents / Rede neural artificial aplicada na análise da qualidade de vida de adolescentes
DOI:
https://doi.org/10.9789/2175-5361.rpcfo.v15.11997Keywords:
Adolescente, Qualidade de vida, Saúde públicaAbstract
Objective: to build a model that explains the quality of life in school adolescents from the KIDSCREEN-27 instrument through the creation of an artificial neural network. Method: cross-sectional and analytical study with 635 adolescents using KIDSCREEN-27. An artificial neural network with four layers was developed to evaluate the variable quality of life by means of the mean responses. For the first three layers of neurons, logistic function was used as transfer function and linear function was used for activation. Results: the neural network reached accuracy of 98.96% and when compared the dimensions of kidscreen-27 with sex and practice of physical activities all presented significant statistical association, except the dimensions social support and peer group and school environment. Conclusion: the results may have important consequences for the identification of adolescents at risk and the direction of public health policies.
Downloads
References
Agathão BT, Reichenheim ME, Moraes CL. Health-related quality of life of adolescent students. Cien Saude Colet. [Internet]. 2018 [acesso em 10 de março 2022]; 23(2). Disponível em: https://pubmed.ncbi.nlm.nih.gov/29412423/.
Emerich BF, Gava GB. Caderno de promoção da saúde de adolescentes na atenção básica. Campinas, SP: IPADS; 2019.
Alves MAR, Pinto GMC, Stadler H, Pedroso B. Application of KIDSCREEN-27 instrument in children and adolescents: comparison between boys and girls at puberty. Revista Stricto Sensu. [Internet]. 2016 [acesso em 10 de março 2022]; 1(1). Disponível em: https://www.scielo.br/j/prc/a/LtpDgyKn7vXSZy4LBz9wHfN/?lang=en&format=pdf.
Andersen JR, Natvig GK, Aadland E, Moe VF, Kolotkin RL, Anderssen SA, et al. Associations between health-related quality of life, cardiorespiratory fitness, muscle strength, physical activity and waist circumference in 10-year-old children: the ASK study. Qual Life Res. [Internet]. 2017 [acesso em 13 de março 2022];26(12). Disponível em: https://pubmed.ncbi.nlm.nih.gov/28656535/.
Andersen JR, Natvig GK, Haraldstad K, Skrede T, Aadland E, Resaland GK. Psychometric properties of the Norwegian version of the KIDSCREEN-27 questionnaire. Health Qual Life Outcomes. [Internet]. 2016 [acesso em 20 de março 2022];14(58). Disponível em: https://hqlo.biomedcentral.com/articles/10.1186/s12955-016-0460-4.
Bagheri Z, Jafari P, Tashakor E, Kouhpayeh A, Riazi H. Assessing whether measurement invariance of the KIDSCREEN-27 across child-parent dyad depends on the child gender: a multiple group confirmatory factor analysis. Glob J Health Sci. [Internet]. 2014 [acesso em 10 de abril 2021]; 6(5). Disponível em: https://pubmed.ncbi.nlm.nih.gov/25169000/.
Baquero OS, Santana LMR, Chiaravalloti-Neto F. Dengue forecasting in São Paulo city with generalized additive models, artificial neural networks and seasonal autoregressive integrated moving average models. PLoS One. [Internet]. 2018 [acesso em 2 de maio 2021]; 13(4). Disponível em: https://journals.plos.org/plosone/article?id=10.1371/journal.pone.0195065.
Basheer IA, Hajmeer M. Artificial Neural Networks: Fundamentals, Computing, Design, and Application. J Microbiol Methods. [Internet]. 2000 [acesso em 10 de maio 2021]; 43(1). Disponível em: https://www.sciencedirect.com/science/article/abs/pii/S0167701200002013.
Bertoletti J, Marx GC, Hattge SP, Pellanda LC. Health-related quality of life in adolescents with congenital heart disease. Cardiol Young. [Internet]. 2015 [acesso em 12 de julho 2021]; 25(3). Available from: https://pubmed.ncbi.nlm.nih.gov/24674735/.
Braga AP, Carvalho ACPLF, Ludermir TB. Redes neurais artificiais: teoria e aplicações. Rio de Janeiro: LTC; 2000.
Centers for Disease Control and Prevention. Measuring Healthy Days: population assessment of health-related quality of life. Atlanta: CDC; 2000.
Cui W, Zack MM, Wethington H. Health-related quality of life and body mass index among US adolescents. Qual Life Res. [Internet]. 2014 [acesso em 7 de outubro 2021];23(7). Available from: https://pubmed.ncbi.nlm.nih.gov/24526296/.
Ferneda E. Redes neurais e sua aplicação em sistemas de recuperação de informação. Ci Inf. [Internet]. 2006 [acesso em 10 de outubro 2021]; 35(1). Disponível em: https://www.scielo.br/j/ci/a/SQ9myjZWLxnyXfstXMgCdcH/abstract/?lang=pt.
Foundation Health Measure Report. Health-Related Quality of Life and Well-Being. Healthy People. [Internet]. 2020 [acesso em 12 de outubro 2021]; 1(1). Disponível em: https://www.healthypeople.gov/2020/about/foundation-health-measures/Health-Related-Quality-of-Life-and-Well-Being.
Gaspar T, Matos MG. Qualidade de vida em crianças e adolescentes: Versão portuguesa dos instrumentos KIDSCREEN-52. Cruz Quebrada: Gráfica Europam; 2008.
Grad FP. The Preamble of the Constitution of the World Health Organization. Bulletin of the World Health Organization. [Internet]. 2002 [acesso em 20 de novembro 2021]; 80(12). Available from: https://www.scielosp.org/pdf/bwho/2002.v80n12/981-981/en.
Idler EL, Benyamini Y. Self-rated health and mortality: a review of twenty-seven community studies. J Health Soc Behav. [Internet]. 1997 [acesso em 22 de novembro 2021]; 38(1). Available from: https://pubmed.ncbi.nlm.nih.gov/9097506/.
Instituto Brasileiro de Geografia e Estatística (IBGE). Censo Demográfico 2010: características da população e dos domicílios. Rio de Janeiro: IBGE; 2011.
Farias-Júnior JC, Loch MR, Lima-Neto AJ, Sales JM, Ferreira FELL. Reproducibility, internal consistency, and construct validity of KIDSCREEN-27 in Brazilian adolescents. Cad Saúde Pública. [Internet]. 2017 [acesso em 10 de dezembro 2021]; 33(9). Available from: https://www.scielo.br/j/csp/a/cP7VntCwmHPQ9p5yhsh9DTC/abstract/?lang=en.
Kupusinac A, Stokić E, Doroslovački R. Predicting body fat percentage based on gender, age and BMI by using artificial neural networks. Comput Methods Programs Biomed. [Internet]. 2014 [acesso em 15 de dezembro 2021]; 113(2). Available from: https://pubmed.ncbi.nlm.nih.gov/24275480/.
Maria WB, Guimarães ACA, Mathias TS. Estilo de vida de adolescentes de escolas públicas e privadas de Florianópolis-SC. Rev. Ed. Física UEM. [Internet]. 2009 [acesso em 20 de dezembro 2021]; 20(4). Disponível em: https://periodicos.uem.br/ojs/index.php/RevEducFis/article/view/6943.
Ng JY, Burnett A, Ha AS, Sum KW. Psychometric properties of the Chinese (Cantonese) versions of the KIDSCREEN health-related quality of life questionnaire. Qual Life Res. [Internet]. 2015 [acesso em 2 de janeiro 2020];24(10). Available from: https://pubmed.ncbi.nlm.nih.gov/25861912/.
Ravens-Sieberer U, Herdman M, Devine J, Otto C, Bullinger M, Rose M, et al. The European KIDSCREEN approach to measure quality of life and well-being in children: development, current application, and future advances. Qual Life Res. [Internet]. 2014 [acesso em 10 de março 2021]; 23(3). Available from: https://pubmed.ncbi.nlm.nih.gov/23686556/.
Soares AH, Martins AJ, Lopes MC, Britto JA, Oliveira CQ, Moreira MC. Quality of life of children and adolescents: a bibliographical review. Cien Saude Colet. [Internet]. 2011 [acesso em 10 de março 2021]; 16(7). Available from: https://pubmed.ncbi.nlm.nih.gov/21808907/.
Stevanovic D, Jafari P. A cross-cultural study to assess measurement invariance of the KIDSCREEN-27 questionnaire across Serbian and Iranian children and adolescents. Qual Life Res. [Internet]. 2015 [acesso em 12 de março 2021]; 24(1). Available from: https://pubmed.ncbi.nlm.nih.gov/25034175/.
The KIDSCREEN Group Europe. The KIDSCREEN questionnaires: Quality of life questionnaires for children and adolescents. Germany: Armin Vahrenhorst; 2006.
World Health Organization (WHO). Constitution of the World Health Organization. New York: WHO; 1948.
World Health Organization (WHO). Global Accelerated Action for the Health of Adolescents (AA-HA!): guidance to support country implementation. Geneva: World Health Organization; 2017.
World Health Organization (WHO). Salud para los adolescentes del mundo: Una segunda oportunidad en la segunda década. Geneva: World Health Organization; 2014.
Wu D, Warwick K, Ma Z, Gasson MN, Burgess JG, Pan S, et al. Prediction of Parkinson's disease tremor onset using a radial basis function neural network based on particle swarm optimization. Int J Neural Syst. [Internet]. 2010 [acesso em 20 de março 2022]; 20(2). Available from: https://pubmed.ncbi.nlm.nih.gov/20411594/.
Published
Versions
- 2023-06-30 (3)
- 2023-04-12 (2)
- 2023-04-06 (1)
How to Cite
Issue
Section
License
Copyright (c) 2023 Revista de Pesquisa Cuidado é Fundamental Online
This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 International License.
TRANSFER AGREEMENT COPYRIGHT I transfer copyright of the article to the Journal of Care Survey is Fundamental - Online - RPCF, so it is accepted due to electronic publishing. The copyright includes the right to reproduce in whole or in part by any means, distributing that article, including figures, photographs, and any translations. The author can also print and distribute copies of your article, stating that since the rights belong to RPCF. I declare that this manuscript is original and has not been submitted for publication, in whole or in part to other online journals or not, so BMMC in the Annals of scientific events or book chapters.